37,272 research outputs found

    Investigation of rock behavior and strength in situ and laboratory techniques adaptability to a lunar exploration program

    Get PDF
    Rock testing techniques for lunar landing site and for lunar samples returned to earth laborator

    HSCO+^+ and DSCO+^+: a multi-technique approach in the laboratory for the spectroscopy of interstellar ions

    Full text link
    Protonated molecular species have been proven to be abundant in the interstellar gas. This class of molecules is also pivotal for the determination of important physical parameters for the ISM evolution (e.g. gas ionisation fraction) or as tracers of non-polar, hence not directly observable, species. The identification of these molecular species through radioastronomical observations is directly linked to a precise laboratory spectral characterisation. The goal of the present work is to extend the laboratory measurements of the pure rotational spectrum of the ground electronic state of protonated carbonyl sulfide (HSCO+^+) and its deuterium substituted isotopomer (DSCO+^+). At the same time, we show how implementing different laboratory techniques allows the determination of different spectroscopical properties of asymmetric-top protonated species. Three different high-resolution experiments were involved to detected for the first time the bb-type rotational spectrum of HSCO+^+, and to extend, well into the sub-millimeter region, the aa-type spectrum of the same molecular species and DSCO+^+. The electronic ground-state of both ions have been investigated in the 273-405 GHz frequency range, allowing the detection of 60 and 50 new rotational transitions for HSCO+^+ and DSCO+^+, respectively. The combination of our new measurements with the three rotational transitions previously observed in the microwave region permits the rest frequencies of the astronomically most relevant transitions to be predicted to better than 100 kHz for both HSCO+^+ and DSCO+^+ up to 500 GHz, equivalent to better than 60 m/s in terms of equivalent radial velocity. The present work illustrates the importance of using different laboratory techniques to spectroscopically characterise a protonated species at high frequency, and how a similar approach can be adopted when dealing with reactive species.Comment: 7 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Chemistry laboratory safety manual available

    Get PDF
    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents

    Experimental economics: Methods, problems and promise

    Get PDF
    The purpose of this paper is to discuss the growing importance of experimentation in economic analysis. We present a variety of economic issues that have been explored with laboratory techniques. We also address some common objections to experimentation, as well as some of the principal lessons that have been learned.

    Behavioural simulation of biological neuron systems using VHDL and VHDL-AMS

    No full text
    The investigation of neuron structures is an incredibly difficult and complex task that yields relatively low rewards in terms of information from biological forms (either animals or tissue). The structures and connectivity of even the simplest invertebrates are almost impossible to establish with standard laboratory techniques, and even when this is possible it is generally time consuming, complex and expensive. Recent work has shown how a simplified behavioural approach to modelling neurons can allow “virtual” experiments to be carried out that map the behaviour of a simulated structure onto a hypothetical biological one, with correlation of behaviour rather than underlying connectivity. The problems with such approaches are numerous. The first is the difficulty of simulating realistic aggregates efficiently, the second is making sense of the results and finally, it would be helpful to have an implementation that could be synthesised to hardware for acceleration. In this paper we present a VHDL implementation of Neuron models that allow large aggregates to be simulated. The models are demonstrated using a system level VHDL and VHDL-AMS model of the C. Elegans locomotory system

    Error Correction in DNA Computing: Misclassification and Strand Loss

    Get PDF
    We present a method of transforming an extract-based DNA computation that is error-prone into one that is relatively error-free. These improvements in error rates are achieved without the supposition of any improvements in the reliability of the underlying laboratory techniques. We assume that only two types of errors are possible: a DNA strand may be incorrectly processed or it may be lost entirely. We show to deal with each of these errors individually and then analyze the tradeoff when both must be optimized simultaneously

    Advanced laboratory techniques: gamma emission in the decay of 226Ra

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Any: 2014, Tutor: Ricardo GracianiThis work deals with the measurement of the gamma radiation emitted in the decay chain of 226Ra. A theoretical study was carried out to give an approximation of the probabilities and polartity of the transitions. An inside on gamma interactions with matter helped to understand the observed spectrum. The nal measurement, done with a scintillator, was analized and compared with previous studies on this matter. The discrepancies observed were justi ed by the low resolution of the used detector

    Multidisciplinary teaching of Biotechnology and Omics sciences

    Get PDF
    In the last years, there was a great boom in the Omics fields that have developed as multidisciplinary sciences. They use laboratory techniques related to Biology and Chemistry but also Bioinformatics tools. However, the developmental progress of these disciplines has led that much of undergraduate studies related to Biology have curricula that become outdated. From this point of view, it is necessary to focus the students to the fundamentals and techniques of complementary disciplines that will be essentials for the understanding of the Omics sciences. In the present work, we have developed a new teaching approach for Biochemistry, Biology and Bioinformatics students. They formed interdisciplinary working groups. These groups have prepared and presented communications about different techniques or methods in Molecular Biology, Omics or Bioinformatics participating in a technical meeting. This learning strategy “I do and I learn” has enabled to the students a first contact with the scientific communication including the approach to the scientific literature to acquire technical knowledge. The cooperation between students from different disciplines has enriched their point of view and even has been used in some practical master’s works.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore