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INVESTIGATION O F  ROCK BEHAVIOR AND STRENGTH 

I. INTRODUCTION 

Sound planning of Apollo Application P rograms  (A A P )  and extended 

lunar exploration programs call for a preliminary formulation of desirable 

rock mechanics studies on- site a s  well a s  on Ea r th  Returned Samples 

(ERS). Two aspects  of this problem have been dealt with in other publica- 

tions on this  contract*, namely, measurement of s t r e s s e s  and rock deforma- 

bility in boreholes. The bulk of rock testing techniques, still  to  be appraised, 

is the object of the present report. 

Whereas until a few y e a r s  ago design of s t ruc tures  in rock was still 

approached on the bas i s  of experience and rule- Of-thumb, recent develop- 

ments in rock mechanics a r e  providing more  and more  dependable and rea-  

l ist ic tools of investigation whose use appears  vital for  sound engineering 

practice. 

of any structure:  

A s  expressed by Deerel', four s teps  a r e  involved i n  the design 

1. Determination of the boundary conditions of the problem, i. e. , 

i t s  dimensions and geometry and the magnitude of the loads which a r e  to be 

resis ted.  This includes the initial state of s t r e s s  of the in situ rock. 



2. Determination of the of the mater ia ls  involved. * 
I 

I 

I 

Unlike metals  o r  concrete, rock var ies  to such an extent that an extensive 

program of in situ and laboratory testing subject to engineering judgment 

I 

I should be required to insure selection of pertinent design parameters .  

3. Selection of a tentative design and prediction of the behavior in t e r m s  I 

of stability and deformations using equations f rom theoretical and applied 

mechanics. Rock behavior, however, does not always agree with continuum 
I 

theories, this being the most delicate problem, so far, to  be tackled. I 

I 

4. Assessment of the predicted behavior in t e r m s  of acceptability of 

performance f o r  the particular problem at hand followed by redesign if 

necessary. 

tance. 

thanthe material  properties used in the equation relating load and defor- 

mation properties (Step 3) even though the relations a r e  cor rec t  and appli- 

cable, and the geometry and loading values of the f i r s t  step a r e  correct .  

Following is a cri t ical  evaluation of the most 'significant techniques 

Indeed, Step 2 investigated i n  this report  is of utmost impor- 

The design and prediction of engineering behavior w i l l  be no better 

currently used in the investigation of rock behavior and strength. 

11. IN SITU TESTING* 

1. Seismic Testing 

The field seismic technique i s  frequently utilized in exploratory work 

to  sound out the variations in quality of an in situ rock mass ,  i. e . ,  number 

and type of discontimiities, layering, overall  fracturation, etc. It can also 

apply to  the detection of surface subsidence, to investigation of ore  deposits, 

*The reader  i s  referred to a Lis t  of References, a List  of Symbols, and 
Table I fo r  complementary information on this subject. 
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I I etc. Seismic wave velocity may be measured from a refraction seismic 

survey by surface impact and recording, up- hole shooting, continuous 3-D 

logging in dr i l l  hole or c r o s s  hole seismic recording. 

that it does not yield information immediately related to rock strength and 

I 
I Despite the fact 
I 
I 

I deformability, t h i s  t es t  should be given highest priority in a lunar explor: 

ation program for scientific reasons.  'It is another kind of remote sensing 

technique. A s  discussed later,  subsequent engineering use can be made of 

1 

I .  
I 

I the available data even though the computed dynamic modulus correspcnds 
I 

to  t ransient  loading and very low s t r e s s  levels generated by the pulse. 

2. Static Testing 
I 

Behavior and possibly strength pa rame te r s  of a rock m a s s  a r e  be t te r  

investigated through so- called static t e s t s  not concerned with the vagaries  

of t ransient  loading. 

of the body to  engineering works as follows: 

a) P la te  Bearing Tes t  

They more closely approximate the actual response 

l 

Deere  states", "A relatively large volume of rock deforms as the 
~ 

I result  of the change i n  s t r e s s  imposed by s t ruc tures  built upon or  within 

l it. The frequency and nature of the geological discontinuities within the zone 

of influence are significant factors  which determine to  a great  extent the 

behavior of the rock mass.  

a reasonable es t imate  of the effect of these discontinuities and of the nu- 

mer i ca l  values of the deformation modulus is large-scale  field load tes ts .  

However valuable th i s  technique in earth rock engineering, the consider- 

able bulkiness of the apparatus involved does not make it appropriate 

fo r  lunar  programs owing to payload constraints.  

The only method that can be used to provide 

I 1  

Moreover, new borehole 

techniques 6 8 ~  72 seem to  provide equally reliable data and in  a much fas te r  

way. 

3 



bl P r e s s u r e  Chamber Tes t  

surface of and around underground openings. The "quality" of the rock 

I usually increases  with distance t o  the open surface,  the "skin" being usually 

T h i s  very large scale loading tes t  has  limited use even on ear th  

and should not be considered for  lunar exploration. 

~ 

of poor strength cwing to high gradient of stresses, blasting, and other 

effects. Hence there is need f o r  investigation of s t ra in  f rom the sur face  

4 

c) Field Shear Test 

Little h a s  been achieved in the field of large scale in situ shear  

testing. 

take place in a lunar program because of i t s  complexity and cumbersome 

However valuable data it can yield on earth, this  test cannot 

charact e r . 

d) Flat Jack  Test 

Originally a s t r e s s  measurement technique, the flat jack designed 

by Freyssinet h a s  been improved by R ~ c h a ~ ~ .  

be used as a deformability measuring i n ~ t r u m e n t ~ ~ .  

The instrument can  a l so  

This  technique re- 

mains basically one of surface investigation. 

e) Field Compression 

Even less  is known of the actual value of this  extension to  large 

scale specimens (pil lars,  etc. ) of the uniaxial compression laboratory 

test. 

the only ones so  far known to  the authors to  be t rue  in situ strength t e s t s  

making them most valuable in ear th  engineering, how ever  expensive. 

It should be pointed out here  that the previous two techniques are 

f.) Rock Deformeters 

Equally important t o  the deformation under applied load is the re- 

laxation of a rock m a s s  upon removal of stresses which take place on'the 



to’the undisturbed zone. This  is achieved through the use of rock defor- 
I 

I 
meters16J 3 6 ~  37 (down-the- hole extensometers, floating rock-bolt clusters,  

I 
I t rans i t  surveys, etc. ). This  technique should be a compulsory complement 

to  any s t r e s s  survey o r  surface load deformation study in ear th  rock engin- I 

eering. Unfortunately room and payload constraints w i l l  very probably 

I prohibit i t s  use in lunar exploration. 
1 ,  

. g )  Log of Borings 

Careful logging of the products of drilling can give valuable data 
I 

I on rock quality. From any exploratory drilling the following information 

1 should be gathered in o rde r  to relate these factors to  subsequent testing 

1 in the laboratory: total length drilled, f racture  frequency, and length, 

position and orientation of specimens retrieved. 

vide a quantitative quality index, the Rock Quality Designation (RQD) de- 

veloped by Deere17, which can be compared to other quality indexes a s  

discussed further on. Drilling and logging shall be done at the s i te  of 

any other  in situ tes t  and this  is t rue on the moon a s  on earth.. Salient 

I Careful logging w i l l  pro- 
~ 

~ 

i , 
I 
I 

I 

I fea tures  and rating of the above tes t s  a r e  summarized in Table I. 

111. LABORATORY TESTING* 

The following does not constitute an exhaustive list of known laboratory 1 -  

t e s t s  on rock. This would be beyond the scope of this  investigation. Em-  

I I 
phasis is placed, rather,  on those tes ts  which are most commonly used 

to  provide information relevant t o  rock strength and mechanical behavior 

as opposed to  chemical, isotopic, mineralogic, petrographic, thermal,  

e lec t r ica l  or magnetic behavior70. Nor does it constitute a proposal fo r  

*The r e a d e r  is re fer red  to  a List  of References, a List  of Symbols, and 
Table I1 for complementary information on th is  subject. 
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* testing of Lunar Returned Samples. This w i l l  be, possibly, the subject of 

a fur ther  study. 

1. Dynamic Testing 

a) Pulse Velocity 

A s  in the field, the travel time, amplitude variation and energy 

absorption of pulses have been used extensively in an effort t o  characterize,  

mainly through the dynamic YGmg's modulus, t he  elastic propert ies  of 

a rock mass .  This technique shall be called indirect since Ed is not directly 

usable for  engineering purposes but through empirical  correlation laws 40, 71 

b) Resonance 

The resonant frequency of a rock specimen from which Ed can be 

computed is neither a f i rs t -order"  parameter  of strength nor behavior. 1 1  

However, owing to their  non-destructive character,  the two previous dy- 

namic t e s t s  would rank with high priority in a program of testing on Re- 

turned Lunar  Samples. 

2. Static Testing 

a) ComDression Tes t s  

Uniaxial and triaxial  compression tes t s  a r e  among the most widely 

performed strength tes ts .  Their  data should be analyzed in a statistical 

way to  put into evidence not only the average value of strength parameters  

(compressive strength, angle of friction, cohesion) but a lso the distribu- 

tion (scattering) and anisotropy. 

t e s t s  they should be performed on Returned Lunar Samples. 

Despite the fact that they a re  destructive 

b) Shear Tes ts  

Following recent developments in the simulation of rock joints be- 

7 



h a ~ i o r ~ ~ ,  direct shear  test  data can be used in a new application of the 

Finite Element Method. 

tion and not in joint stiffness, the multi-stage triaxial test  provides r e -  

quired information. 

major  discontinuities (slopes in jointed rock, openings in bedded rock, 

etc. ) 

- 

When one i s  interested only i n  joint angle of fric- 

Results will apply to the stability of structure presenting 

c) Tension Tests 

The stability of s t ructures  in rock m a s s e s  also very heavily depends, 

in most cases ,  upon the rock 's  tensile strength. In the past few years ,  

much research has  been devoted to  the investigation of tensile strength. 

It appears that for practical  purposes, two t e s t s  (direct unconfined tension 

and rupture of a beam) would give the best  answers.  

different but complementary so  that both should now be considered a s  

Their resul ts  are 

standard tests.  

d) CreeD Test 
~~ -~ 

Their  purpose is to  find out which percentage of the maximum 

compressive load can be applied onto a rock over a sustained period of t ime 

without it undergoing excessive strain.  A common procedure of soil  testing, 

it finds i t s  application in rock engineering, too 55B 56 (deformation of dam 

abutments, creep of mine pil lars,  etc. ). Moreover, to be significant, 

results must  be obtained over a ra ther  long period of time. 

e)  Permeability 

Standard permeability t e s t s  in the laboratory have been recently 

to  provide very promising ' 'second order" pa rame te r s  of strength 

and behavior. 

above a r e  shown in Table 11. 

The main features and rating of the techniques discussed 

8 



fV. CONCLUSION 

This study d r a w s  attention to two very important features  of rock 

testing: 

1. In the present state of the ar t ,  design of s t ructure  upon o r  in 

rock r e l i e s  mostly on in situ behavior analysis and laboratory strength 

studies. Little has  been done in the in situ testing of rock strength. The 

major  obstacle appears to be the bulkiness of the equipment used in order  

to  investigate a s  wide a si te a s  possible, hence the difficulty of repetition 

at many different si tes.  

I '  2. Firs t -order"  parameters  of strength w i l l  be defined a s  those 

values obtained directly f rom laboratory t e s t s  (oC, ot, ,R, Qr, Qj, etc. ). 

However, owing to  the non-homogeneity of rock, these data are often 

character ized by a wide scattering of values. 

in the past  f e w  y e a r s  attempted either to  define "second-order" parameters  

of strength and 

Several investigators have 

34 o r  t o  build up empir ical  correlation laws 44, 64, 71 

between f i r s t  o rde r  parameters .  

Designation17 (RQD) based upon the degree of recovery of pieces of sound 

c o r e s  in  a dr i l l  hole, the Velocity Ratio" (Vf!V') 

To be...mentioned a r e  the Rqck Quality 

2 where Vf and Vi a r e  

respectively the seismic velocities in the field and in laboratory testing 

of specimens, the rat io  6,/(6p+6e)17 in  a plate bearing tes t  where 6, and 

6 a r e  respectively the elastic and permanent rock deformations, the co- 

efficient of variation34 o / M  in uniaxial compression t e s t s  where o is the 
P 

standard deviation and M the average value of the compressive strength, 

and the  permeability ratio34 R-1IR-50 where R - 1  and R-50 a r e  respectively 

the diverging permeability under 1 b a r  and converging permeability under 

50 bars differential p re s su re  in a thick wall cylinder specimen. 

a l so  define the ratio" Er /E lab  of the field deformation modulus and 

One can 

9 



laboratory dynamic modulus as a second order  parameter  of behavior. 

However severe the constraints can be in a lunar program of rock 

engineering studies, the above discussion lends hope that a very compre- 

hensive and reliable investigation of lunar rock engineering properties can 

be conducted. Instruments w i l l  be designed68 which can operate in bore- 

holes on the moon, and meaningful laboratory tests can be performed on 

a limited amount of returned samples, to ultimately yield directly o r  through 

correlation techniques reliable data on lunar rock strength and behavior 

that a r e  needed for a sound planning of lunar exploratory missions. 

10 
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LIST OF SYMBOLS 

a 

b 

C 

d 

D 

Etot 

Et 

FN 

FS 

Ed 

G 

H 

J 

k 

K 

n 

Pi 

P o  

P 

R 

S 

r S 

inner diameter of thick w a l l  cylinder o r  tunnel (in) 

outer diameter of thick w a l l  cylinder o r  tunnel (in) 

cohesion (psi)  

deflection of beam (in) 

diameter of specimen (in) 

static deformation modulus (psi)  

static tangent modulus of elasticity (psi)  

dynamic modulus of elasticity (psi)  

normal s t r e s s  (psi)  

tangent s t  r e  ss (psi)  

shear  modulus (psi)  

length of specimen (in) 

moment of inertia 

permeability (in/ se c)  

correction factor 

r e  s onant frequency 

internal pressure  in chamber 

applied hydrostatic pressure  (psi)  

applied lose. lbs (plate bearing, Brasil ian,  rupture)  

modulus of rupture (psi)  

shear  strength (ps i )  

residual shear  strength (psi)  
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'%ax 

T 

U 

VS 
CY 

Y 

6 

6r 

El 

U 

P 

peak shear strength (psi) 

torque ( in  x lbs) 

variation in a (in) 

longitudinal wave velocity ft/ sec 

shear  wave velocity ftlsec 

radius of loading plate (in) 

unit weight of rock lbs/ f t3  

rock deflection under plate (in) 

displacement at distance r from tunnel center 

longitudinal s t ra in  (in) 

Poisson 's  Ratio 

71 g 

longitudinal stress (psi) 

confining pressure  (psi) 

tensile strength (psi) 

uniaxial compressive strength (psi) 

friction angle rock (degrees) 

friction angle joint (degrees) 
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