21,929 research outputs found

    Simulation of Multi-element Antenna Systems for Navigation Applications

    Get PDF
    The application of user terminals with multiple antenna inputs for use with the global satellite navigation systems like GPS and Galileo becomes more and more attraction in last years. Multiple antennas may be spread over the user platform and provide signals required for the platform attitude estimation or may be arranged in an antenna array to be used together with array processing algorithms for improving signal reception, e.g. for multipath and interference mitigation. In order to generate signals for testing of receivers with multiple antenna inputs and corresponding receiver algorithms in a laboratory environment a unique HW signal simulation tool for wavefront simulation has been developed. The signals for a number of antenna elements in a flexible user defined geometry are first generated as digital signals in baseband and then mixed up to individual RF-outputs. The paper describes the principle function of the system and addresses some calibration issues. Measurement set-ups and results of data processing with simulated signals for different applications are shown and discussed

    Waveform Approach for Assessing Conformity of CISPR 16-1-1 Measuring Receivers

    Get PDF
    An alternative approach for assessing the conformity of electromagnetic interference measuring receivers with respect to the baseline CISPR 16-1-1 requirements is proposed. The method’s core is based on the generation of digitally synthesized complex waveforms comprising multisine excitation signals and modulated pulses. The superposition of multiple narrowband reference signals populating the standard frequency bands allows for a single-stage evaluation of the receiver’s voltage accuracy and frequency selectivity. Moreover, characterizing the response of the weighting detectors using modulated pulses is more repeatable and less restrictive than the conventional approach. This methodology significantly reduces the amount of time required to complete the verification of the receiver’s baseline magnitudes, because time-domain measurements enable a broadband assessment while the typical calibration methodology follows the time-consuming narrow band frequency sweep scheme. Since the reference signals are generated using arbitrary waveform generators, they can be easily reproduced from a standard numerical vector. For different test receivers, the results of such assessment are presented in the 9 kHz–1 GHz frequency range. Finally, a discussion on the measurement uncertainty of this methodology for assessing measuring receivers is given.Postprint (author's final draft

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Biophotonic Tools in Cell and Tissue Diagnostics.

    Get PDF
    In order to maintain the rapid advance of biophotonics in the U.S. and enhance our competitiveness worldwide, key measurement tools must be in place. As part of a wide-reaching effort to improve the U.S. technology base, the National Institute of Standards and Technology sponsored a workshop titled "Biophotonic tools for cell and tissue diagnostics." The workshop focused on diagnostic techniques involving the interaction between biological systems and photons. Through invited presentations by industry representatives and panel discussion, near- and far-term measurement needs were evaluated. As a result of this workshop, this document has been prepared on the measurement tools needed for biophotonic cell and tissue diagnostics. This will become a part of the larger measurement road-mapping effort to be presented to the Nation as an assessment of the U.S. Measurement System. The information will be used to highlight measurement needs to the community and to facilitate solutions

    The Dark Energy Survey Data Management System

    Full text link
    The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.Comment: To be published in the proceedings of the SPIE conference on Astronomical Instrumentation (held in Marseille in June 2008). This preprint is made available with the permission of SPIE. Further information together with preprint containing full quality images is available at http://desweb.cosmology.uiuc.edu/wik
    • 

    corecore