44,804 research outputs found

    Labeled Memory Networks for Online Model Adaptation

    Full text link
    Augmenting a neural network with memory that can grow without growing the number of trained parameters is a recent powerful concept with many exciting applications. We propose a design of memory augmented neural networks (MANNs) called Labeled Memory Networks (LMNs) suited for tasks requiring online adaptation in classification models. LMNs organize the memory with classes as the primary key.The memory acts as a second boosted stage following a regular neural network thereby allowing the memory and the primary network to play complementary roles. Unlike existing MANNs that write to memory for every instance and use LRU based memory replacement, LMNs write only for instances with non-zero loss and use label-based memory replacement. We demonstrate significant accuracy gains on various tasks including word-modelling and few-shot learning. In this paper, we establish their potential in online adapting a batch trained neural network to domain-relevant labeled data at deployment time. We show that LMNs are better than other MANNs designed for meta-learning. We also found them to be more accurate and faster than state-of-the-art methods of retuning model parameters for adapting to domain-specific labeled data.Comment: Accepted at AAAI 2018, 8 page

    Memory Aware Synapses: Learning what (not) to forget

    Full text link
    Humans can learn in a continuous manner. Old rarely utilized knowledge can be overwritten by new incoming information while important, frequently used knowledge is prevented from being erased. In artificial learning systems, lifelong learning so far has focused mainly on accumulating knowledge over tasks and overcoming catastrophic forgetting. In this paper, we argue that, given the limited model capacity and the unlimited new information to be learned, knowledge has to be preserved or erased selectively. Inspired by neuroplasticity, we propose a novel approach for lifelong learning, coined Memory Aware Synapses (MAS). It computes the importance of the parameters of a neural network in an unsupervised and online manner. Given a new sample which is fed to the network, MAS accumulates an importance measure for each parameter of the network, based on how sensitive the predicted output function is to a change in this parameter. When learning a new task, changes to important parameters can then be penalized, effectively preventing important knowledge related to previous tasks from being overwritten. Further, we show an interesting connection between a local version of our method and Hebb's rule,which is a model for the learning process in the brain. We test our method on a sequence of object recognition tasks and on the challenging problem of learning an embedding for predicting triplets. We show state-of-the-art performance and, for the first time, the ability to adapt the importance of the parameters based on unlabeled data towards what the network needs (not) to forget, which may vary depending on test conditions.Comment: ECCV 201
    • …
    corecore