166 research outputs found

    Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition

    Full text link
    A key challenge in fine-grained recognition is how to find and represent discriminative local regions. Recent attention models are capable of learning discriminative region localizers only from category labels with reinforcement learning. However, not utilizing any explicit part information, they are not able to accurately find multiple distinctive regions. In this work, we introduce an attribute-guided attention localization scheme where the local region localizers are learned under the guidance of part attribute descriptions. By designing a novel reward strategy, we are able to learn to locate regions that are spatially and semantically distinctive with reinforcement learning algorithm. The attribute labeling requirement of the scheme is more amenable than the accurate part location annotation required by traditional part-based fine-grained recognition methods. Experimental results on the CUB-200-2011 dataset demonstrate the superiority of the proposed scheme on both fine-grained recognition and attribute recognition

    Semantic Graph for Zero-Shot Learning

    Full text link
    Zero-shot learning aims to classify visual objects without any training data via knowledge transfer between seen and unseen classes. This is typically achieved by exploring a semantic embedding space where the seen and unseen classes can be related. Previous works differ in what embedding space is used and how different classes and a test image can be related. In this paper, we utilize the annotation-free semantic word space for the former and focus on solving the latter issue of modeling relatedness. Specifically, in contrast to previous work which ignores the semantic relationships between seen classes and focus merely on those between seen and unseen classes, in this paper a novel approach based on a semantic graph is proposed to represent the relationships between all the seen and unseen class in a semantic word space. Based on this semantic graph, we design a special absorbing Markov chain process, in which each unseen class is viewed as an absorbing state. After incorporating one test image into the semantic graph, the absorbing probabilities from the test data to each unseen class can be effectively computed; and zero-shot classification can be achieved by finding the class label with the highest absorbing probability. The proposed model has a closed-form solution which is linear with respect to the number of test images. We demonstrate the effectiveness and computational efficiency of the proposed method over the state-of-the-arts on the AwA (animals with attributes) dataset.Comment: 9 pages, 5 figure
    • …
    corecore