238,534 research outputs found

    Partial Transfer Learning with Selective Adversarial Networks

    Full text link
    Adversarial learning has been successfully embedded into deep networks to learn transferable features, which reduce distribution discrepancy between the source and target domains. Existing domain adversarial networks assume fully shared label space across domains. In the presence of big data, there is strong motivation of transferring both classification and representation models from existing big domains to unknown small domains. This paper introduces partial transfer learning, which relaxes the shared label space assumption to that the target label space is only a subspace of the source label space. Previous methods typically match the whole source domain to the target domain, which are prone to negative transfer for the partial transfer problem. We present Selective Adversarial Network (SAN), which simultaneously circumvents negative transfer by selecting out the outlier source classes and promotes positive transfer by maximally matching the data distributions in the shared label space. Experiments demonstrate that our models exceed state-of-the-art results for partial transfer learning tasks on several benchmark datasets

    Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

    Get PDF
    We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state-of-the-art for topic-based sentiment analysis.Comment: To appear at NAACL 2018 (long

    Transfer Learning across Networks for Collective Classification

    Full text link
    This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201

    Fuzzy rule-based transfer learning for label space adaptation

    Full text link
    © 2017 IEEE. As the age of big data approaches, methods of massive scale data management are rapidly evolving. The traditional machine learning methods can no longer satisfy the exponential development of big data; there is a common assumption in these data-driving methods that the distribution of both the training data and testing data should be equivalent. A model built using today's data will not adequately address the classification tasks tomorrow if the distribution of the data item values has changed. Transfer learning is emerging as a solution to this issue, and many methods have been proposed. Few of the existing methods, however, explicitly indicate the solution to the case where the labels' distributions in two domains are different. This work proposes the fuzzy rule-based methods to deal with transfer learning problems where the discrepancy between the two domains shows in the label spaces. The presented methods are validated in both the synthetic and real-world datasets, and the experimental results verify the effectiveness of the introduced methods
    corecore