4 research outputs found

    Subgroup Preference Neural Network.

    Full text link
    Subgroup label ranking aims to rank groups of labels using a single ranking model, is a new problem faced in preference learning. This paper introduces the Subgroup Preference Neural Network (SGPNN) that combines multiple networks have different activation function, learning rate, and output layer into one artificial neural network (ANN) to discover the hidden relation between the subgroups' multi-labels. The SGPNN is a feedforward (FF), partially connected network that has a single middle layer and uses stairstep (SS) multi-valued activation function to enhance the prediction's probability and accelerate the ranking convergence. The novel structure of the proposed SGPNN consists of a multi-activation function neuron (MAFN) in the middle layer to rank each subgroup independently. The SGPNN uses gradient ascent to maximize the Spearman ranking correlation between the groups of labels. Each label is represented by an output neuron that has a single SS function. The proposed SGPNN using conjoint dataset outperforms the other label ranking methods which uses each dataset individually. The proposed SGPNN achieves an average accuracy of 91.4% using the conjoint dataset compared to supervised clustering, decision tree, multilayer perceptron label ranking and label ranking forests that achieve an average accuracy of 60%, 84.8%, 69.2% and 73%, respectively, using the individual dataset

    Preference rules for label ranking: Mining patterns in multi-target relations

    Get PDF
    In this paper, we investigate two variants of association rules for preference data, Label Ranking Association Rules and Pairwise Association Rules. Label Ranking Association Rules (LRAR) are the equivalent of Class Association Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single class, to which the example is expected to belong to. In LRAR, the consequent is a ranking of the labels. The generation of LRAR requires special support and confidence measures to assess the similarity of rankings. In this work, we carry out a sensitivity analysis of these similarity-based measures. We want to understand which datasets benefit more from such measures and which parameters have more influence in the accuracy of the model. Furthermore, we propose an alternative type of rules, the Pairwise Association Rules (PAR), which are defined as association rules with a set of pairwise preferences in the consequent. While PAR can be used both as descriptive and predictive models, they are essentially descriptive models. Experimental results show the potential of both approaches.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-1, and by National Funds through the FCT — Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013

    Discovering a taste for the unusual: exceptional models for preference mining

    Get PDF
    Exceptional preferences mining (EPM) is a crossover between two subfields of data mining: local pattern mining and preference learning. EPM can be seen as a local pattern mining task that finds subsets of observations where some preference relations between labels significantly deviate from the norm. It is a variant of subgroup discovery, with rankings of labels as the target concept. We employ several quality measures that highlight subgroups featuring exceptional preferences, where the focus of what constitutes exceptional' varies with the quality measure: two measures look for exceptional overall ranking behavior, one measure indicates whether a particular label stands out from the rest, and a fourth measure highlights subgroups with unusual pairwise label ranking behavior. We explore a few datasets and compare with existing techniques. The results confirm that the new task EPM can deliver interesting knowledge.This research has received funding from the ECSEL Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under Grant Agreement Number 662189-MANTIS-2014-1
    corecore