10 research outputs found

    Building Social Digital Libraries

    Get PDF
    The accelerating rate of scientific and technical discovery, typified by the ever-shortening time period for the doubling of information – currently estimated at 18 months – causes new topics to emerge at an increasing rate. Large amounts of human knowledge are available online – not only in the form of texts and images, but also as audio files, movies, software demos, etc

    A visual analysis of the usage efficiency of library books

    Get PDF
    The monographic collections in academic libraries have undergone a period of tremendous growth in volume, in subject diversity, and in formats during the recent several decades. Readers may find it difficult to prioritize which book(s) should be borrowed for a specific purpose. The log data of book loan record may serve as a visible indicator for the more sought-after books by the readers. This paper describes our experimental efforts in works in a university library setting. The visual analysis is thought to provide an effective way to extract the book usage information, which may yield new insights into a host of other related technical as well as user behavior issues. Initial experiment has demonstrated that the proposed approach as articulated in this article can actually benefit end-users as well as library collection development personnel in their endeavor of book selections with effective measure.</p

    3DCoMPaT++^{++}: An improved Large-scale 3D Vision Dataset for Compositional Recognition

    Full text link
    In this work, we present 3DCoMPaT++^{++}, a multimodal 2D/3D dataset with 160 million rendered views of more than 10 million stylized 3D shapes carefully annotated at the part-instance level, alongside matching RGB point clouds, 3D textured meshes, depth maps, and segmentation masks. 3DCoMPaT++^{++} covers 41 shape categories, 275 fine-grained part categories, and 293 fine-grained material classes that can be compositionally applied to parts of 3D objects. We render a subset of one million stylized shapes from four equally spaced views as well as four randomized views, leading to a total of 160 million renderings. Parts are segmented at the instance level, with coarse-grained and fine-grained semantic levels. We introduce a new task, called Grounded CoMPaT Recognition (GCR), to collectively recognize and ground compositions of materials on parts of 3D objects. Additionally, we report the outcomes of a data challenge organized at CVPR2023, showcasing the winning method's utilization of a modified PointNet++^{++} model trained on 6D inputs, and exploring alternative techniques for GCR enhancement. We hope our work will help ease future research on compositional 3D Vision.Comment: https://3dcompat-dataset.org/v2

    GlamMap: visualizing library metadata

    Get PDF

    Collaborative Visual Interface for Knowledge Management ---The Design and the Influence Analysis

    Get PDF
    [[abstract]]既有的查詢介面,常以單一的使用者為設計的核心,因此使用者常需單獨面對查詢資訊的過程。本研究建議設計新的合作式視覺介面,讓使用者在查詢資訊的過程中,可以輕易地找到有類似興趣的人,並透過彼此的溝通與討論,提升資訊搜尋的速度與品質。為了瞭解所設計的介面對決策的影響,我們也在研究中提出模式與假設,希望利用實驗的方式,深入分析不同的介面設計所帶來的影響。我們的研究成果,將提供系統設計及資訊搜尋者,作為設計查詢介面的參考以及分析介面設計影響的基礎。[[abstract]]Existing efforts on query interface design concentrate on single user and result in lonely knowledge seeking process. Therefore, in this research, we suggest to design a collaborative visual interface in which human users can take advantages of the behavior of the like-mined people via interaction, and thereby exploring complex information space collaboratively. In order to understand the influence of the designed interface on decision making, in this research, we also propose a model to test the interactive querying environment. The results of this research will provide system designers with heuristics of constructing querying interfaces and inform knowledge seeks how querying interfaces influence the performance of decision making

    VisIRR: Interactive Visual Information Retrieval and Recommendation for Large-scale Document Data

    Get PDF
    Research areas: Machine learning, Data mining, Information visualization, Visual analytics, Text visualization.We present a visual analytics system called VisIRR, which is an interactive visual information retrieval and recommendation system for document discovery. VisIRR effectively combines both paradigms of passive pull through a query processes for retrieval and active push that recommends the items of potential interest based on the user preferences. Equipped with efficient dynamic query interfaces for a large corpus of document data, VisIRR visualizes the retrieved documents in a scatter plot form with their overall topic clusters. At the same time, based on interactive personalized preference feedback on documents, VisIRR provides recommended documents reaching out to the entire corpus beyond the retrieved sets. Such recommended documents are represented in the same scatter space of the retrieved documents so that users can perform integrated analyses of both retrieved and recommended documents seamlessly. We describe the state-of-the-art computational methods that make these integrated and informative representations as well as real time interaction possible. We illustrate the way the system works by using detailed usage scenarios. In addition, we present a preliminary user study that evaluates the effectiveness of the system

    Biophysical parameter retrieval from satellite laser altimetry.

    Get PDF
    Quantifying and monitoring vegetation distribution and change are fundamental to carbon accounting and requirements of national forest inventories. This research explores the potential of the Geoscience Laser Altimeter System (GLAS), launched in 2003 by NASA as the first global Earth surface satellite LiDAR mission. The project study site is the Forest of Dean, Gloucestershire, UK, a highly mixed, temperate forest with varied topography. Methods are developed to distinguish the regions within waveforms returned from vegetation and ground. When compared with field measurements, estimation of canopy height gives a correlation of R2=0.92; RMSE=2.81m. Waveform indices are determined and evaluated with respect to their potential to estimate biophysical parameters. Heights of cumulative energy percentiles within the waveform prove to be significant estimators. When compared to calculations from independent yield models, results show correlations with stand- level top height (R2=0.76; RMSE 3.9m) and stemwood volume (mixed composition stands dominated by broadleaves: R2=0.47, RMSE=75.6m3/ha; conifers: R2=0.66, RMSE=82.5m3/ha). Uncertainty analysis is undertaken of both waveform and yield model estimates. Canopy cover is estimated for the area beneath GLAS waveforms, corrected for differences in reflectance for ground and canopy surfaces. These are assessed against airborne LiDAR estimates, validated using hemispherical photography. The method produces results with R2=0.63; RMSE=11% for stands with greatest coverage by broadleaves and R2=0.41; RMSE 16% for conifer-dominated stands. Small footprint airborne LiDAR (AL) is widely accepted to offer valuable data regarding forest parameters. An evaluation of AL and GLAS results demonstrate that the broad GLAS footprint dimensions allow similar estimation of stand-level parameters (e.g. AL/yield model Top Height: R2=0.73, RMSE=4.5m). Direct comparison of GLAS with AL shows ground surface identification with mean difference of 0.32m and that elevation profiles correspond well (98th percentiles R2=0.76, RMSE=3.4m). Finally, prospects for use of LiDAR in carbon accounting, assimilation within models and for forestry applications are discussed

    Low-latency big data visualisation

    Get PDF
    Diese Arbeit hat sich zum Ziel gesetzt, Methoden aufzuzeigen, „Big-Data“-Archive zu organisieren und zentrale Elemente der enthaltenen Informationen zu visualisieren. Anhand von drei wissenschaftlichen Experimenten werde ich zwei „Big-Data“- Herausforderungen, Datenvolumen (Volume) und Heterogenität (Variety), untersuchen und eine Visualisierung im Browser präsentieren, die trotz reduzierter Datenrate die wesentliche Information in den Datensätzen enthält

    FACING EXPERIENCE: A PAINTER’S CANVAS IN VIRTUAL REALITY

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This research investigates how shifts in perception might be brought about through the development of visual imagery created by the use of virtual environment technology. Through a discussion of historical uses of immersion in art, this thesis will explore how immersion functions and why immersion has been a goal for artists throughout history. It begins with a discussion of ancient cave drawings and the relevance of Plato’s Allegory of the Cave. Next it examines the biological origins of “making special.” The research will discuss how this concept, combined with the ideas of “action” and “reaction,” has reinforced the view that art is fundamentally experiential rather than static. The research emphasizes how present-day virtual environment art, in providing a space that engages visitors in computer graphics, expands on previous immersive artistic practices. The thesis examines the technical context in which the research occurs by briefly describing the use of computer science technologies, the fundamentals of visual arts practices, and the importance of aesthetics in new media and provides a description of my artistic practice. The aim is to investigate how combining these approaches can enhance virtual environments as artworks. The computer science of virtual environments includes both hardware and software programming. The resultant virtual environment experiences are technologically dependent on the types of visual displays being used, including screens and monitors, and their subsequent viewing affordances. Virtual environments fill the field of view and can be experienced with a head mounted display (HMD) or a large screen display. The sense of immersion gained through the experience depends on how tracking devices and related peripheral devices are used to facilitate interaction. The thesis discusses visual arts practices with a focus on how illusions shift our cognition and perception in the visual modalities. This discussion includes how perceptual thinking is the foundation of art experiences, how analogies are the foundation of cognitive experiences and how the two intertwine in art experiences for virtual environments. An examination of the aesthetic strategies used by artists and new media critics are presented to discuss new media art. This thesis investigates the visual elements used in virtual environments and prescribes strategies for creating art for virtual environments. Methods constituting a unique virtual environment practice that focuses on visual analogies are discussed. The artistic practice that is discussed as the basis for this research also concentrates on experiential moments and shifts in perception and cognition and references Douglas Hofstadter, Rudolf Arnheim and John Dewey. iv Virtual environments provide for experiences in which the imagery generated updates in real time. Following an analysis of existing artwork and critical writing relative to the field, the process of inquiry has required the creation of artworks that involve tracking systems, projection displays, sound work, and an understanding of the importance of the visitor. In practice, the research has shown that the visitor should be seen as an interlocutor, interacting from a first-person perspective with virtual environment events, where avatars or other instrumental intermediaries, such as guns, vehicles, or menu systems, do not to occlude the view. The aesthetic outcomes of this research are the result of combining visual analogies, real time interactive animation, and operatic performance in immersive space. The environments designed in this research were informed initially by paintings created with imagery generated in a hypnopompic state or during the moments of transitioning from sleeping to waking. The drawings often emphasize emotional moments as caricatures and/or elements of the face as seen from a number of perspectives simultaneously, in the way of some cartoons, primitive artwork or Cubist imagery. In the imagery, the faces indicate situations, emotions and confrontations which can offer moments of humour and reflective exploration. At times, the faces usurp the space and stand in representation as both face and figure. The power of the placement of the caricatures in the paintings become apparent as the imagery stages the expressive moment. The placement of faces sets the scene, establishes relationships and promotes the honesty and emotions that develop over time as the paintings are scrutinized. The development process of creating virtual environment imagery starts with hand drawn sketches of characters, develops further as paintings on “digital canvas”, are built as animated, three-dimensional models and finally incorporated into a virtual environment. The imagery is generated while drawing, typically with paper and pencil, in a stream of consciousness during the hypnopompic state. This method became an aesthetic strategy for producing a snappy straightforward sketch. The sketches are explored further as they are worked up as paintings. During the painting process, the figures become fleshed out and their placement on the page, in essence brings them to life. These characters inhabit a world that I explore even further by building them into three dimensional models and placing them in computer generated virtual environments. The methodology of developing and placing the faces/figures became an operational strategy for building virtual environments. In order to open up the range of art virtual environments, and develop operational strategies for visitors’ experience, the characters and their facial features are used as navigational strategies, signposts and methods of wayfinding in order to sustain a stream of consciousness type of navigation. Faces and characters were designed to represent those intimate moments of self-reflection and confrontation that occur daily within ourselves and with others. They sought to reflect moments of wonderment, hurt, curiosity and humour that could subsequently be relinquished for more practical or purposeful endeavours. They were intended to create conditions in which visitors might reflect upon their emotional state, v enabling their understanding and trust of their personal space, in which decisions are made and the nature of world is determined. In order to extend the split-second, frozen moment of recognition that a painting affords, the caricatures and their scenes are given new dimensions as they become characters in a performative virtual reality. Emotables, distinct from avatars, are characters confronting visitors in the virtual environment to engage them in an interactive, stream of consciousness, non-linear dialogue. Visitors are also situated with a role in a virtual world, where they were required to adapt to the language of the environment in order to progress through the dynamics of a drama. The research showed that imagery created in a context of whimsy and fantasy could bring ontological meaning and aesthetic experience into the interactive environment, such that emotables or facially expressive computer graphic characters could be seen as another brushstroke in painting a world of virtual reality

    Engineering shortest paths and layout algorithms for large graphs

    Get PDF
    corecore