16,593 research outputs found

    G4LTL-ST: Automatic Generation of PLC Programs

    Full text link
    G4LTL-ST automatically synthesizes control code for industrial Programmable Logic Controls (PLC) from timed behavioral specifications of input-output signals. These specifications are expressed in a linear temporal logic (LTL) extended with non-linear arithmetic constraints and timing constraints on signals. G4LTL-ST generates code in IEC 61131-3-compatible Structured Text, which is compiled into executable code for a large number of industrial field-level devices. The synthesis algorithm of G4LTL-ST implements pseudo-Boolean abstraction of data constraints and the compilation of timing constraints into LTL, together with a counterstrategy-guided abstraction refinement synthesis loop. Since temporal logic specifications are notoriously difficult to use in practice, G4LTL-ST supports engineers in specifying realizable control problems by suggesting suitable restrictions on the behavior of the control environment from failed synthesis attempts.Comment: This is the full version of the CAV'14 paper. Research concepts developed this paper are mainly from the technical report "Numerical LTL synthesis for cyber-physical systems", coauthored by Chih-Hong Cheng (ABB Research) and Edward A. Lee (UC Berkeley

    A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

    Full text link
    We propose to synthesize a control policy for a Markov decision process (MDP) such that the resulting traces of the MDP satisfy a linear temporal logic (LTL) property. We construct a product MDP that incorporates a deterministic Rabin automaton generated from the desired LTL property. The reward function of the product MDP is defined from the acceptance condition of the Rabin automaton. This construction allows us to apply techniques from learning theory to the problem of synthesis for LTL specifications even when the transition probabilities are not known a priori. We prove that our method is guaranteed to find a controller that satisfies the LTL property with probability one if such a policy exists, and we suggest empirically with a case study in traffic control that our method produces reasonable control strategies even when the LTL property cannot be satisfied with probability one

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Extended LTLvis Motion Planning interface (Extended Technical Report)

    Full text link
    This paper introduces an extended version of the Linear Temporal Logic (LTL) graphical interface. It is a sketch based interface built on the Android platform which makes the LTL control interface more straightforward and friendly to nonexpert users. By predefining a set of areas of interest, this interface can quickly and efficiently create plans that satisfy extended plan goals in LTL. The interface can also allow users to customize the paths for this plan by sketching a set of reference trajectories. Given the custom paths by the user, the LTL specification and the environment, the interface generates a plan balancing the customized paths and the LTL specifications. We also show experimental results with the implemented interface.Comment: 8 pages, 15 figures, a technical report for the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016

    Events in Property Patterns

    Full text link
    A pattern-based approach to the presentation, codification and reuse of property specifications for finite-state verification was proposed by Dwyer and his collegues. The patterns enable non-experts to read and write formal specifications for realistic systems and facilitate easy conversion of specifications between formalisms, such as LTL, CTL, QRE. In this paper, we extend the pattern system with events - changes of values of variables in the context of LTL.Comment: 14 pages, 3 figure

    Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL

    Full text link
    We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL), which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Qualitative Analysis of POMDPs with Temporal Logic Specifications for Robotics Applications

    Get PDF
    We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty
    corecore