722 research outputs found

    Performance Enhancement by Exploiting the Spatial Domain for Cost, Space and Spectrum Constraint 5G Communication

    Get PDF
    With everlasting increase of connectivity demand and high speed data communication, lots of progresses have been made to provide a sufficient quality of services (QoS). Several advanced technologies have been the cornerstone of this trend in academia as well as in industry. Nevertheless, there are some implementation challenges, which needs to be closely investigated. In this thesis, among all challenges, we elaborate on those related to number of radio frequency (RF) chains and resource scarcity. The principle idea behind our proposed initial solution is to exploit the spatial domain as an additional degree of freedom. To be more specific, we benefit from spatial domain and antenna index in a multiple-input multiple-output (MIMO) system with dual-polarized (DP) antennas to convey the information. We develop a two-stage algorithm to groups the antennas which ends up to the optimum performance. Another advantage of this proposed algorithm is the complete complexity reduction of exhaustive search over the whole available space. Moreover, due to the continuous growth of demands which results in spectrum scarcity, we investigate the extension of long term evolution (LTE) spectrum. Such a paradigm shift is realized to offload part of the data to unlicensed band, which has been initially dedicated to other standardizations such as wireless local area networks (WLAN). As both LTE and wireless fidelity (Wi-Fi) networks have been widely deployed with solid infrastructures, it is significantly important to make their coexistence viable with a cost-effective approach which inherently requires the minimum protocol modification. Thus, we take the advantage of spatially located multiple antennas of base station (BS) and access point (AP) for the sake of beamforming and interference reduction. In addition to network coexistence, we approach the resource scarcity from the non-orthogonal multiple access (NOMA) point of view, where users share the frequency and time resources and are differentiated in power domain. In particular, we closely consider those users with limited number of RF chains. Similar to our first approach, we utilize spatial modulation (SM) in user end and after evaluating their performance, we propose to consider the capacity of SM NOMA to elaborate the impact of pairing on the achievable sum rate performance

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA based 5G Wireless Networks

    Get PDF
    Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Energy Efficiency in MIMO Underlay and Overlay Device-to-Device Communications and Cognitive Radio Systems

    Full text link
    This paper addresses the problem of resource allocation for systems in which a primary and a secondary link share the available spectrum by an underlay or overlay approach. After observing that such a scenario models both cognitive radio and D2D communications, we formulate the problem as the maximization of the secondary energy efficiency subject to a minimum rate requirement for the primary user. This leads to challenging non-convex, fractional problems. In the underlay scenario, we obtain the global solution by means of a suitable reformulation. In the overlay scenario, two algorithms are proposed. The first one yields a resource allocation fulfilling the first-order optimality conditions of the resource allocation problem, by solving a sequence of easier fractional problems. The second one enjoys a weaker optimality claim, but an even lower computational complexity. Numerical results demonstrate the merits of the proposed algorithms both in terms of energy-efficient performance and complexity, also showing that the two proposed algorithms for the overlay scenario perform very similarly, despite the different complexity.Comment: to appear in IEEE Transactions on Signal Processin

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication
    corecore