157 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Self Organizing strategies for enhanced ICIC (eICIC)

    Get PDF
    Small cells have been identified as an effective solution for coping with the important traffic increase that is expected in the coming years. But this solution is accompanied by additional interference that needs to be mitigated. The enhanced Inter Cell Interference Coordination (eICIC) feature has been introduced to address the interference problem. eICIC involves two parameters which need to be optimized, namely the Cell Range Extension (CRE) of the small cells and the ABS ratio (ABSr) which defines a mute ratio for the macro cell to reduce the interference it produces. In this paper we propose self-optimizing algorithms for the eICIC. The CRE is adjusted by means of load balancing algorithm. The ABSr parameter is optimized by maximizing a proportional fair utility of user throughputs. The convergence of the algorithms is proven using stochastic approximation theorems. Numerical simulations illustrate the important performance gain brought about by the different algorithms.Comment: Submitted to WiOpt 201

    Performance Analysis of Scheduling Schemes for Femto to Macro Interference Coordination in LTE-Femtocell Deployment Scenario

    Get PDF
    Deploying femtocells that have low power level in LTE with small coverage area is an alternative solution for mobile operators to improve indoors network coverage area as well as system capacity. However deploying femtocells (HeNB) that were used co-channel frequency, can be brought about interference problem to the Macro BTS (eNB). Close Subscriber Group (CSG) of HeNB allows only User equipment (UE) to access HeNB. HeNB is the source of interference for UE who cannot access it. Therefore it is necessary for interference coordination methods among the HeNB and eNB. The methods are ICIC (Intercell Interference Coordination) and eICIC (enhanced Intercell Interference Coordination).  This paper proposed performance analysis of scheduling schemes for Femto to macro interference coordination that allocated resource in the frequency and time domain using LTE-Femtocell suburban and urban deployment scenario. Simulation result using ICIC methods can improve SINR performance 15.77 % in urban and 28.66 % in suburban, throughput performance 10.11 % in urban and 21.05 % in suburban. eICIC methods can improve SINR performance 17.44 % in urban and 31.14 % in suburban, throughput performance 19.83% in urban and 44.39 % in suburban.The result prove using eICIC method in time domain resource have better performance than using ICIC method in frequency resource. However using eICIC method in suburban deployment scenariocan increase the performance of SINR and throughput more effective than using eICIC method in urban deployment scenario

    Load balancing using cell range expansion in LTE advanced heterogeneous networks

    Get PDF
    The use of heterogeneous networks is on the increase, fueled by consumer demand for more data. The main objective of heterogeneous networks is to increase capacity. They offer solutions for efficient use of spectrum, load balancing and improvement of cell edge coverage amongst others. However, these solutions have inherent challenges such as inter-cell interference and poor mobility management. In heterogeneous networks there is transmit power disparity between macro cell and pico cell tiers, which causes load imbalance between the tiers. Due to the conventional user-cell association strategy, whereby users associate to a base station with the strongest received signal strength, few users associate to small cells compared to macro cells. To counter the effects of transmit power disparity, cell range expansion is used instead of the conventional strategy. The focus of our work is on load balancing using cell range expansion (CRE) and network utility optimization techniques to ensure fair sharing of load in a macro and pico cell LTE Advanced heterogeneous network. The aim is to investigate how to use an adaptive cell range expansion bias to optimize Pico cell coverage for load balancing. Reviewed literature points out several approaches to solve the load balancing problem in heterogeneous networks, which include, cell range expansion and utility function optimization. Then, we use cell range expansion, and logarithmic utility functions to design a load balancing algorithm. In the algorithm, user and base station associations are optimized by adapting CRE bias to pico base station load status. A price update mechanism based on a suboptimal solution of a network utility optimization problem is used to adapt the CRE bias. The price is derived from the load status of each pico base station. The performance of the algorithm was evaluated by means of an LTE MATLAB toolbox. Simulations were conducted according to 3GPP and ITU guidelines for modelling heterogeneous networks and propagation environment respectively. Compared to a static CRE configuration, the algorithm achieved more fairness in load distribution. Further, it achieved a better trade-off between cell edge and cell centre user throughputs. [Please note: this thesis file has been deferred until December 2016

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    Hierarchical Radio Resource Optimization for Heterogeneous Networks with Enhanced Inter-cell Interference Coordination (eICIC)

    Full text link
    Interference is a major performance bottleneck in Heterogeneous Network (HetNet) due to its multi-tier topological structure. We propose almost blank resource block (ABRB) for interference control in HetNet. When an ABRB is scheduled in a macro BS, a resource block (RB) with blank payload is transmitted and this eliminates the interference from this macro BS to the pico BSs. We study a two timescale hierarchical radio resource management (RRM) scheme for HetNet with dynamic ABRB control. The long term controls, such as dynamic ABRB, are adaptive to the large scale fading at a RRM server for co-Tier and cross-Tier interference control. The short term control (user scheduling) is adaptive to the local channel state information within each BS to exploit the multi-user diversity. The two timescale optimization problem is challenging due to the exponentially large solution space. We exploit the sparsity in the interference graph of the HetNet topology and derive structural properties for the optimal ABRB control. Based on that, we propose a two timescale alternative optimization solution for the user scheduling and ABRB control. The solution has low complexity and is asymptotically optimal at high SNR. Simulations show that the proposed solution has significant gain over various baselines.Comment: 14 pages, 8 figure
    • …
    corecore