15,063 research outputs found

    Multiple path prediction for traffic scenes using LSTMs and mixture density models

    Get PDF
    This work presents an analysis of predicting multiple future paths of moving objects in traffic scenes by leveraging Long Short-Term Memory architectures (LSTMs) and Mixture Density Networks (MDNs) in a single-shot manner. Path prediction allows estimating the future positions of objects. This is useful in important applications such as security monitoring systems, Autonomous Driver Assistance Systems and assistive technologies. Normal approaches use observed positions (tracklets) of objects in video frames to predict their future paths as a sequence of position values. This can be treated as a time series. LSTMs have achieved good performance when dealing with time series. However, LSTMs have the limitation of only predicting a single path per tracklet. Path prediction is not a deterministic task and requires predicting with a level of uncertainty. Predicting multiple paths instead of a single one is therefore a more realistic manner of approaching this task. In this work, predicting a set of future paths with associated uncertainty was archived by combining LSTMs and MDNs. The evaluation was made on the KITTI and the CityFlow datasets on three type of objects, four prediction horizons and two different points of view (image coordinates and birds-eye vie

    Arc-Standard Spinal Parsing with Stack-LSTMs

    Full text link
    We present a neural transition-based parser for spinal trees, a dependency representation of constituent trees. The parser uses Stack-LSTMs that compose constituent nodes with dependency-based derivations. In experiments, we show that this model adapts to different styles of dependency relations, but this choice has little effect for predicting constituent structure, suggesting that LSTMs induce useful states by themselves.Comment: IWPT 201
    corecore