558 research outputs found

    Word Representation Models for Morphologically Rich Languages in Neural Machine Translation

    Full text link
    Dealing with the complex word forms in morphologically rich languages is an open problem in language processing, and is particularly important in translation. In contrast to most modern neural systems of translation, which discard the identity for rare words, in this paper we propose several architectures for learning word representations from character and morpheme level word decompositions. We incorporate these representations in a novel machine translation model which jointly learns word alignments and translations via a hard attention mechanism. Evaluating on translating from several morphologically rich languages into English, we show consistent improvements over strong baseline methods, of between 1 and 1.5 BLEU points

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    From feature to paradigm: deep learning in machine translation

    No full text
    In the last years, deep learning algorithms have highly revolutionized several areas including speech, image and natural language processing. The specific field of Machine Translation (MT) has not remained invariant. Integration of deep learning in MT varies from re-modeling existing features into standard statistical systems to the development of a new architecture. Among the different neural networks, research works use feed- forward neural networks, recurrent neural networks and the encoder-decoder schema. These architectures are able to tackle challenges as having low-resources or morphology variations. This manuscript focuses on describing how these neural networks have been integrated to enhance different aspects and models from statistical MT, including language modeling, word alignment, translation, reordering, and rescoring. Then, we report the new neural MT approach together with a description of the foundational related works and recent approaches on using subword, characters and training with multilingual languages, among others. Finally, we include an analysis of the corresponding challenges and future work in using deep learning in MTPostprint (author's final draft

    Pre-reordering for neural machine translation: helpful or harmful?

    Get PDF
    Pre-reordering, a preprocessing to make the source-side word orders close to those of the target side, has been proven very helpful for statistical machine translation (SMT) in improving translation quality. However, is it the case in neural machine translation (NMT)? In this paper, we firstly investigate the impact of pre-reordered source-side data on NMT, and then propose to incorporate features for the pre-reordering model in SMT as input factors into NMT (factored NMT). The features, namely parts-of-speech (POS), word class and reordered index, are encoded as feature vectors and concatenated to the word embeddings to provide extra knowledge for NMT. Pre-reordering experiments conducted on Japanese↔English and Chinese↔English show that pre-reordering the source-side data for NMT is redundant and NMT models trained on pre-reordered data deteriorate translation performance. However, factored NMT using SMT-based pre-reordering features on Japanese→English and Chinese→English is beneficial and can further improve by 4.48 and 5.89 relative BLEU points, respectively, compared to the baseline NMT system

    Statistical Machine Translation Features with Multitask Tensor Networks

    Full text link
    We present a three-pronged approach to improving Statistical Machine Translation (SMT), building on recent success in the application of neural networks to SMT. First, we propose new features based on neural networks to model various non-local translation phenomena. Second, we augment the architecture of the neural network with tensor layers that capture important higher-order interaction among the network units. Third, we apply multitask learning to estimate the neural network parameters jointly. Each of our proposed methods results in significant improvements that are complementary. The overall improvement is +2.7 and +1.8 BLEU points for Arabic-English and Chinese-English translation over a state-of-the-art system that already includes neural network features.Comment: 11 pages (9 content + 2 references), 2 figures, accepted to ACL 2015 as a long pape
    corecore