3,802 research outputs found
Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region
During Tertiary to Quaternary times, convergence between Eurasia and Africa resulted in a variety of collisional orogens and different styles of subduction in the Alpine-Mediterranean region. Characteristic features of this area include arcuate orogenic belts and extensional basins, both of which can be explained by roll-back of subducted slabs and retreating subduction zones. After cessation of active subduction, slab detachment and post-collisional gravitational collapse of the overthickened lithosphere took place. This complex tectonic history was accompanied by the generation of a wide variety of magmas. Most of these magmas (e.g. low-K tholeiitic, calc-alkaline, shoshonitic and ultrapotassic types) have trace element and isotopic fingerprints that are commonly interpreted to reflect enrichment of their source regions by subduction-related fluids. Thus, they can be considered as ‘subduction-related’ magmas irrespective of their geodynamic relationships. Intraplate alkali basalts are also found in the region generally postdated the ‘subduction-related’ volcanism. These mantle-derived magmas have not been, or only slightly, influenced by subduction-related enrichment.
This paper summarises the geodynamic setting of the Tertiary-Quaternary “subduction-related” magmatism in the different segments of the Alpine-Mediterranean region (Betic-Alboran-Rif province, Central Mediterranean, the Alps, Carpathian-Pannonian region, Dinarides and Hellenides, Aegean and Western Anatolia), and discusses the main characteristics and compositional variation of the magmatic rocks. Radiogenic and stable isotope data indicate the importance of continental crustal material in the genesis of these magmas. Interaction with crustal material probably occurred both in the upper mantle during subduction (‘source contamination’) and in the continental crust during ascent of mantle-derived magmas (either by mixing with crustal melts or by crustal contamination). The 87Sr/86Sr and 206Pb/204Pb isotope ratios indicate that an enriched mantle component, akin to the source of intraplate alkali mafic magmas along the Alpine foreland, played a key role in the petrogenesis of the ‘subduction-related’ magmas of the Alpine-Mediterranean region. This enriched mantle component could be related to mantle plumes or to long-term pollution (deflection of the central Atlantic plume and recycling of crustal material during subduction) of the shallow mantle beneath Europe since the late Mesozoic. In the first case, subduction processes could have had an influence in generating asthenospheric flow by deflecting nearby mantle plumes due to slab roll-back or slab break-off. In the second case, the variation in the chemical composition of the volcanic rocks in the Mediterranean region can be explained by “statistical sampling” of the strongly inhomogeneous mantle followed by variable degrees of crustal contamination
Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region
The south-eastern part of the Carpathian–Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza–Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the ‘Vrancea zone’, shows a shift from normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K-alkalic, mafic Na-alkalic and ultrapotassic), suggesting a significant change in geodynamic processes at approximately 3 Ma. We review the tectonic setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the role of orogenic building processes such as subduction or collision on melt production and migration. The calc-alkaline volcanism (5.3–3.9 Ma) marks the end of normal subduction-related magmatism along the post-collisional Călimani–Gurghiu–Harghita volcanic chain in front of the European convergent plate margin. At ca. 3 Ma in South Harghita magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma) interrupted at 1.6–1.2 Ma by generation of Na and K-alkalic magmas, signifying changes in the source and melting mechanism. We attribute the changes in magma composition in front of the Moesian platform to two main geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like calc-alkaline magmas) and (2) renewed contraction associated with deep mantle processes such as slab steepening during post-collisional times (Na and K-alkalic magmas). Contemporaneous post-collisional volcanism at the eastern edge of the Pannonian Basin at 2.6–1.3 Ma was dominated by Na-alkalic and ultrapotassic magmas, suggesting a close relationship with thermal asthenospheric doming and strain partitioning related to the Adriatic indentation. Similar timing, magma chamber processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains (1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a regional connection with the inversion tectonics
Effective elastic thickness in the Central Andes. Correlation to orogenic deformation styles and lower crust high-gravity anomaly
Global studies have assessed the importance of elastic thickness (Te) on orogenic evolution, showing that the style and nature of upper crustal shortening are influenced by the inherited lithospheric strength. Thus, pioneer works have identified that the upper crustal deformation style in the easternmost sector of the Central Andes in South America are related to the elastic thickness (Te). There, the thick-skinned and pure-shear style of Santa Bárbara system was initially related to the existence of low Te values. In contrast, the thin-skinned and simple-shear style of deformation in the Subandean system involves high Te values. However, more recent Te studies in the Central Andes present conflicting results which lead to question this straightforward relation. Results from these studies show a strong dependence on the applied methodology hampering the general understanding of the lithospheric thermo-mechanical state of the Central Andes. To contribute to this issue, we perform a high-resolution Te map, using forward modeling by solving flexural equation of infinite plate model in two dimensions. To achieve this, the crust-mantle interface was calculated using a high-resolution gravity anomaly dataset which combines satellite and terrestrial data, and an average density contrast. Additionally, the gravity anomaly and the foreland basin depth in the Central Andes were best predicted by considering that lower crustal rocks fill the space deflected downward in the plate model. The obtained Te values show an inverse correlation with previous heat flow studies, and a strong spatial correlation with the styles and mechanisms of deformation in the easternmost sector of the Central Andes. In the Santa Bárbara system Te values less than 10 km predominate, whereas in the Subandean system high Te values were observed. Such high values correlate with the orogenic curvature and with an shallower gravity Moho zone, which breaks the regional trend of the Central Andes. This shallower gravity Moho is linked to a high-gravity anomaly located in the east part of the Eastern Cordillera and Subandean system. These results are also correlated with a high-velocity zone in the upper mantle previously found by receiver functions studies. This correlation could indicate changes in the properties of the lower crustal rocks that justify the shallower gravity Moho zone and explain in part the highest Te values.Fil: Garcia, Hector Pedro Antonio. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gianni, Guido Martin. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lupari, Marianela Nadia. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanchez, Marcos Ariel. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soler, Santiago Rubén. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ruiz, Francisco. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; ArgentinaFil: Lince Klinger, Federico Gustavo. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Neogene plate tectonic reconstructions and geodynamics of North Island sedimentary basins: Implications for the petroleum systems
Although the modern Australia-Pacific plate boundary through New Zealand is relatively straight, there have been significant changes in its geometry during the Neogene. Within the North Island sector there has been a fundamental transition from an Alpine Fault translation/transpression regime to a Hikurangi margin subduction regime. This transition has been accompanied by the southward encroachment of the edge of the Pacific plate oceanic slab into Australia lithosphere, shortened and thickened along its eastern margin as a consequence of the prior Alpine Fault transpression, the process now operating in South Island. The response of the Australia lithosphere at the surface to the emplacement of the subducted slab at depth, has differed in the East Coast forearc region versus the foreland in western North Island, where the depth to the slab is greater and there has been a characteristic southward migration of depocentres pinned to the leading edge of the slab. The recent publication of new rotation parameters for relative motion of the Australia, Antarctic and Pacific plates, have provided key new data from which to plot the successive emplacement history of the Pacific slab beneath North Island, thus enabling the comparisons to be made with basin stratigraphy and geohistory. These data also constrain the age of subduction initiation at various points along the present trend of the Hikurangi Trough, identifying a younging of subduction initiation to the southwest. An implication of this younging direction is that the modern accretion¬ary prism south of Cape Kidnappers can be no older than late Miocene (c. 11 Ma). The focus of this paper is on new ideas about the tectonic development of North Island and its basins, which have implications for hydrocarbon exploration
Coupled mantle dripping and lateral dragging controlling the lithosphere structure of the NW-Moroccan margin and the Atlas Mountains: A numerical experiment
Recent studies integrating gravity, geoid, surface heat flow, elevation and seismic data indicate a prominent lithospheric mantle thickening beneath the NW-Moroccan margin (LAB >200 km-depth) followed by thinning beneath the Atlas Domain (LAB about 80 km-depth). Such unusual configuration has been explained by the combination of mantle underthrusting due to oblique Africa-Eurasia convergence together with viscous dripping fed by asymmetric lateral mantle dragging, requiring a strong crust-mantle decoupling. In the present work we examine the physical conditions under which the proposed asymmetric mantle drip and drag mechanism can reproduce this lithospheric configuration. We also analyse the influence of varying the kinematic boundary conditions as well as the mantle viscosity and the initial lithosphere geometry. Results indicate that the proposed drip-drag mechanism is dynamically feasible and only requires a lateral variation of the lithospheric strength. The further evolution of the gravitational instability can become either in convective removal of the lithospheric mantle, mantle delamination, or subduction initiation. The model reproduces the main trends of the present-day lithospheric geometry across the NW-Moroccan margin and the Atlas Mountains, the characteristic time of the observed vertical movements, the amplitude and rates of uplift in the Atlas Mountains and offers an explanation to the Miocene to Pliocene volcanism. An abnormal constant tectonic subsidence rate in the margin is predicted. (C) 2013 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft
Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology
Peridotite xenoliths erupted in late Miocene basalts (~8 Ma) in the central Sierra Nevada sample a lithosphere that is vertically stratified in terms of age and thermal history. The deeper portions (~45-100 km) have asthenospheric osmium isotopic compositons and possess textural and chemical evidence for cooling from >1100° to 700-820°C. The shallower portions (<60 km) have unradiogenic Os isotopic compositions, which yield Proterozoic model ages, and contain orthopyroxenes that record temperatures as low as 670°C in their cores and heating up to 900°C on their rims. These observations suggest that the deeper xenoliths represent fragments of hot asthenosphere that upwelled to intrude and/or underplate the overlying Proterozoic lithosphere represented by the shallower xenoliths. The contrasting thermal histories between the shallow and deep xenoliths suggest that hot asthenosphere and cold lithosphere were suddenly juxtaposed, a feature consistent with the aftermath of rapid lithospheric removal or sudden intrusion of asthenospheric mantle into the lithosphere rather than passive extension. On the basis of regional tectonics and various time constraints, it is possible that this lithospheric removal event was associated with the generation of the Sierra Nevada granitic batholith during Mesozoic subduction of the Farallon plate beneath North America. Pleistocene basalt-hosted xenoliths record a different chapter in the geodynamic history of the Sierras. These xenoliths are relatively fertile, come from depths shallower than 45-60 km, are characterized by asthenospheric Os isotopic compositions, record hot equilibration temperatures (1000°-1100°C), and show no evidence for cooling. The strong contrast in composition and thermal history between the Pleistocene and late Miocene suites indicate that the post-Mesozoic lithospheric mantle, as represented by the latter, was entirely replaced by the former. The hot Pleistocene peridotites may thus represent new lithospheric additions associated with a post-Miocene lithospheric removal event or extension. High elevations, low sub-Moho seismic velocities, and the presence of fast velocity anomalies at 200 km depth may be manifestations of this event. If lithospheric removal occurred in the Mesozoic and Cenozoic, the observations presented here place constraints on the styles of lithospheric removal. In the Mesozoic, the lithospheric mantle was only partially removed, whereas in the Pliocene, the entire lithospheric mantle and probably the mafic lower crust were removed
3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.
Acknowledgments We are indebted to F. Darbyshire and J. von Hunen for useful comments on earlier versions of this work. This manuscript benefited from thorough and constructive reviews by W. Levandowski and an anonymous reviewer. We also thank J. Connolly, M. Sambridge, B. Kennett, S. Lebedev, B. Shan, U. Faul, and M. Qashqai for insightful discussions about, and contributions to, some of the concepts presented in this paper. The work of J.C.A. has been supported by two Australian Research Council Discovery grants (DP120102372 and DP110104145). Seismic data are from the IRIS DMS. D.L.S. acknowledges support from NSF grant EAR-135866. This is contribution 848 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1106 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au).Peer reviewedPublisher PD
Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America
Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ∼1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (∼39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (∼45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet
- …
