415,017 research outputs found

    Zero gravity liquid mixer

    Get PDF
    An apparatus for mixing liquids under conditions of zero gravity is disclosed. The apparatus is comprised of a closed reservoir for the liquids, with a means for maintaining a positive pressure on the liquids in the reservoir. A valved liquid supply line is connected to the reservoir for supplying the reservoir with the liquids to be mixed in the reservoir. The portion of the reservoir containing the liquids to be mixed is in communication with a pump which alternately causes a portion of the liquids to flow out of the pump and into the reservoir to mix the liquids. The fluids in the reservoir are in communication through a conduit with the pump which alternately causes a portion of the fluids to flow out of the pump and into the sphere. The conduit connecting the pump and sphere may contain a nozzle or other jet-forming structure such as a venturi for further mixing the fluids

    Anomalous BCS equation for a Luttinger superconductor

    Full text link
    In the context of the Anderson theory of high T_c cuprates, we develop a BCS theory for Luttinger liquids. If the Luttinger interaction is much stronger than the BCS potential we find that the BCS equation is quite modified compared to usual BCS equation for Fermi liquids. In particular T_c predicted by the BCS equation for Luttinger liquids is quite higher than the usual T_c for Fermi liquids

    Symmetry enriched U(1) quantum spin liquids

    Get PDF
    We classify and characterize three dimensional U(1)U(1) quantum spin liquids (deconfined U(1)U(1) gauge theories) with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time reversal and SO(3)SO(3) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO(3)SO(3) gauge field, due to which we dub them "fractional topological paramagnets". We identify 11 other anomalous states that can be grouped into 3 anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic Symmetry Protected Topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U(1)U(1) quantum spin liquids. After this warm-up we provide a general framework to classify symmetry enriched U(1)U(1) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U(1)U(1) quantum spin liquids with time reversal and Z2Z_2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U(1)U(1) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U(1)U(1) quantum spin liquids enriched by some other symmetries.Comment: 24 pages + appendices + reference

    Estimating the density scaling exponent of viscous liquids from specific heat and bulk modulus data

    Full text link
    It was recently shown by computer simulations that a large class of liquids exhibits strong correlations in their thermal fluctuations of virial and potential energy [Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)]. Among organic liquids the class of strongly correlating liquids includes van der Waals liquids, but excludes ionic and hydrogen-bonding liquids. The present note focuses on the density scaling of strongly correlating liquids, i.e., the fact their relaxation time tau at different densities rho and temperatures T collapses to a master curve according to the expression tau propto F(rho^gamma/T) [Schroder et al., arXiv:0803.2199]. We here show how to calculate the exponent gamma from bulk modulus and specific heat data, either measured as functions of frequency in the metastable liquid or extrapolated from the glass and liquid phases to a common temperature (close to the glass transition temperature). Thus an exponent defined from the response to highly nonlinear parameter changes may be determined from linear response measurements

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society
    • …
    corecore