1,005,509 research outputs found
Influence of ligand shape and steric hindrance on the composition of the nanocrystal ligand shell
Organic ligands play a key role in the synthesis of colloidal semiconductor nanocrystals or quantum dots. Generally they consist of a functional group and an aliphatic chain, with carboxylic acids, thiols and phosphonic acids as typical examples. The functional group ensures the binding to the nanocrystal surface, while the stability of the dispersion strongly depends on the interactions between the organic chains of the adjacent ligands. A number of studies already addressed the binding strength and the type of binding between the nanocrystal surface and the ligand yet none discuss the effect of the organic chain on the ligand exchange.
By means of NMR spectroscopy, we examine the ligand shell composition of CdSe nanocrystals originally capped with oleic acid (OA), when exposed to a linear carboxylic acid. Regardless of chain length, we see a one-to-one exchange between the carboxylic acids. The composition of the ligand shell closely matches that of the ligand mixture in solution, indicating that the ligand shell can be seen as an ideal mixture of both ligands. As a consequence, a mixed ligand shell can easily be prepared by adding a ligand mixture with desired composition to the nanocrystal dispersion.
On the other hand, when the CdSe nanocrystals are exposed to a branched carboxylic acid with two long aliphatic chains, like 2-hexyldecanoic acid, the ligand shell mainly consists of OA moieties. We interpret these results using an exchange process where the incoming ligand not only displaces oleic acid but also occupies additional space in the ligand shell to accommodate both aliphatic chains. Hence, given a one-for-one exchange reaction, steric hindrance in a fully packed ligand shell will prevent complete ligand exchange. These results can be very useful in view of producing nanocrystals with lower ligand densities by means of synthesis with these branched carboxylic acids
Ligand Substitution Dynamics
Substitution of a ligand in an inner sphere complex by an outside group
is the most fundamental reaction in metal ion chemistr
Morphology of passivating organic ligands around a nanocrystal
Semiconductor nanocrystals are a promising class of materials for a variety
of novel optoelectronic devices, since many of their properties, such as the
electronic gap and conductivity, can be controlled. Much of this control is
achieved via the organic ligand shell, through control of the size of the
nanocrystal and the distance to other objects. We here simulate ligand-coated
CdSe nanocrystals using atomistic molecular dynamics, allowing for the
resolution of novel structural details about the ligand shell. We show that the
ligands on the surface can lie flat to form a highly anisotropic 'wet hair'
layer as opposed to the 'spiky ball' appearance typically considered. We
discuss how this can give rise to a dot-to-dot packing distance of one ligand
length since the thickness of the ligand shell is reduced to approximately
one-half of the ligand length for the system sizes considered here; these
distances imply that energy and charge transfer rates between dots and nearby
objects will be enhanced due to the thinner than expected ligand shell. Our
model predicts a non-linear scaling of ligand shell thickness as the ligands
transition from 'spiky' to 'wet hair'. We verify this scaling using TEM on a
PbS nanoarray, confirming that this theory gives a qualitatively correct
picture of the ligand shell thickness of colloidal quantum dots.Comment: 17 Pages, 9 Figure
Seven coordinate molybdenum and tungsten complexes containing Tpm and Tpm derivatives and the impact of ligand substitution on NMR chemical shifts
A series of known and new seven coordinate molybdenum and tungsten complexes of tris(pyrazolyl)methane (Tpm) and substituted Tpm, [TpmM(CO)3X]+, have been synthesized. Depending on the identity of X, (bromo, iodo, hydrido) and the substitution of the Tpm ligand, substantial chemical shift differences are observed for the hydrogen on the central carbon of the Tpm ligand. Factors impacting the chemical shift of the hydrogen on the central carbon of the Tpm ligand, such as the electron donating ability of the Tpm ligand and the electronegativity of the additional ligand on the metal, will be discussed
Amine, Amido, and Imido Complexes of Tantalum Supported by a Pyridine-Linked Bis(phenolate) Pincer Ligand: Ta−N π-Bonding Influences Pincer Ligand Geometry
A series of tantalum imido and amido complexes supported by a pyridine-linked bis(phenolate) ligand has been synthesized. Characterization of these complexes via X-ray crystallography reveals both C_s and C_2 binding modes of the bis(phenolate)pyridine ligand, with complexes containing two or fewer strong π-donor interactions from ancillary ligands giving C_s symmetry, whereas three strong π-donor interactions (e.g., three amido ligands or one amido ligand and one imido ligand) give C_2-symmetric binding of the bis(phenolate)pyridine ligand. DFT calculations and molecular orbital analyses of the complexes have revealed that the preference for C_s-symmetric ligand binding is a result of tantalum−phenolate π-bonding, whereas in cases where tantalum−phenolate π-bonding is overridden by stronger Ta−N π-bonding, C_2-symmetric ligand binding is preferred, likely because conformationally this is the lowest-energy arrangement. This electronically driven change in geometry indicates that, unlike analogous metallocene systems, the bis(phenolate)pyridine pincer ligand is not a strong enough π-donor to exert dominant control over the electronic and geometric properties of the complex
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Dewetting-controlled binding of ligands to hydrophobic pockets
We report on a combined atomistic molecular dynamics simulation and implicit
solvent analysis of a generic hydrophobic pocket-ligand (host-guest) system.
The approaching ligand induces complex wetting/dewetting transitions in the
weakly solvated pocket. The transitions lead to bimodal solvent fluctuations
which govern magnitude and range of the pocket-ligand attraction. A recently
developed implicit water model, based on the minimization of a geometric
functional, captures the sensitive aqueous interface response to the
concave-convex pocket-ligand configuration semi-quantitatively
Ligand Lone-Pair Influence on Hydrocarbon C-H Activation: A Computational Perspective
Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of
cis-(acac)_2MX and TpM(L)X (M=Ir, Ru, Os, and Rh; acac=acetylacetonate, Tp=tris(pyrazolyl)-borate; X=CH_3, OH, OMe, NH_2, and NMe_2) systems for methane C-H bond activation reaction kinetics and thermodynamics.We address the importance of whether a ligand lone pair provides an
intrinsic kinetic advantage through possible electronic d_π-p_π repulsions for M-OR and M-NR_2 systems versus M-CH_3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps.We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps
Ligand Substitution Processes
From the preface:
The subject of the mechanistic study of ligand substitution reactions is currently undergoing an exciting growth. New fast-reaction techniques have removed the upper limit on rates that can be measured, and extension to less familiar central metal atoms has begun in earnest. This might seem the wrong moment for review of the field. As yet, definitive treatment is possible only for those complexes involving monodentate ligands with cobalt(III) and platinurn(II). But, because information is so extensive for these systems, it is clear that they are functioning as models from which concepts and experiments are generated for application over the fast-growing range of the subject. We believe that this is an important moment to reopen debate on fundamentals so that concepts will be most felicitously formulated to aid growth of understanding. This monograph is centrally concerned with three aspects of those fundamentals.
We have attempted to develop an approach to classification of ligand substitution reactions that is adapted to what seem to have emerged as the characteristic features of these reactions and is susceptible to operational tests. (We do recognize that any such scheme of ideas is necessarily obsolescent once it is formulated since new experiments will certainly follow immediately.) We have tried to evaluate the basis for making generalizations about ligand substitution processes and to formulate tests to show whether new reactions fall within familiar patterns. Finally, we have sought to base the models of ligand substitution processes in the language of molecular-orbital theory. We believe that MO theory is most useful, because it may be used to correlate rate data on complexes with the extensive information available from spectral and magnetic studies, yet differs from crystal-field theory in providing a natural place for consideration of the bonding electrons, which must be a principal determinant of reaction processes.
To keep this essay within bounds, we assume familiarity with the elements of experimental kinetics, transition-state theory, and the simple molecular-orbital theory of complexes. Introductory physical chemistry, some familiarity with the study of reaction mechanisms, and mastery of one of the qualitative treatments of MO theory as applied to transition-metal complexes should provide sufficient background. Thus, we hope that this book will be useful to students, relatively early in their careers, who wish to explore this field.
Our debts to very many workers will be obvious throughout. We want to record here our special personal debt to Professors Ralph G. Pearson and Fred Basolo and to Dr. Martin Tobe. We particularly thank Professor George S. Hammond for his interest and enthusiasm in this project. Professor Hammond carefully read and criticized the entire manuscript in the final drafts. We received many other valuable criticisms at various stages of this project from Professors R. D. Archer, F. Basolo, J. O. Edwards, J. Finholt, P. Haake, J. Halpern, A. Kropf, R. G. Pearson, S. I. Shupack, M. S. Silver, and C. Walling, and Dr. U. Belluco and Dr. L. Cattalini. We very much appreciate their help and probably should have followed their suggestions more closely. We warmly acknowledge expert assistance from Mrs. Madeline deFriesse, Miss Jan Denby, and Mrs. Diane Celeste in preparation of the manuscript.
COOPER H. LANGFORD
HARRY B. GRAY
Amherst, Massachusetts
New York, New York
October 196
Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.
We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure
- …
