24 research outputs found

    The Power of Online Learning in Stochastic Network Optimization

    Full text link
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    The Power of Online Learning in Stochastic Network Optimization

    Get PDF
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Integrating wireless technologies into intra-vehicular communication

    Full text link
    With the emergence of connected and autonomous vehicles, sensors are increasingly deployed within car. Traffic generated by these sensors congest traditional intra-vehicular networks, such as CAN buses. Furthermore, the large amount of wires needed to connect sensors makes it hard to design cars in a modular way. These limitations have created impetus to use wireless technologies to support intra-vehicular communication. In this dissertation, we tackle the challenge of designing and evaluating data collection protocols for intra-car networks that can operate reliably and efficiently under dynamic channel conditions. First, we evaluate the feasibility of deploying an intra-car wireless network based on the Backpressure Collection Protocol (BCP), which is theoretically proven to be throughput-optimal. We uncover a surprising behavior in which, under certain dynamic channel conditions, the average packet delay of BCP decreases with the traffic load. We propose and analyze a queueing-theoretic model to shed light into the observed phenomenon. As a solution, we propose a new protocol, called replication-based LIFO-backpressure (RBL). Analytical and simulation results indicate that RBL dramatically reduces the delay of BCP at low load, while maintaining its high throughput performance. Next, we propose and implement a hybrid wired/wireless architecture, in which each node is connected to either a wired interface or a wireless interface or both. We propose a new protocol, called Hybrid-Backpressure Collection Protocol (Hybrid-BCP), for the intra-car hybrid networks. Our testbed implementation, based on CAN and ZigBee transceivers, demonstrates the load balancing and routing functionalities of Hybrid-BCP and its resilience to DoS attacks. We further provide simulation results, obtained based on real intra-car RSSI traces, showing that Hybrid-BCP can achieve the same performance as a tree-based protocol while reducing the radio transmission power by a factor of 10. Finally, we present TeaCP, a prototype Toolkit for the evaluation and analysis of Collection Protocols in both simulation and experimental environments. TeaCP evaluates a wide range of standard performance metrics, such as reliability, throughput, and latency. TeaCP further allows visualization of routes and network topology evolution. Through simulation of an intra-car WSN and real lab experiments, we demonstrate the functionality of TeaCP for comparing different collection protocols

    Fast-Convergent Learning-aided Control in Energy Harvesting Networks

    Full text link
    In this paper, we present a novel learning-aided energy management scheme (LEM\mathtt{LEM}) for multihop energy harvesting networks. Different from prior works on this problem, our algorithm explicitly incorporates information learning into system control via a step called \emph{perturbed dual learning}. LEM\mathtt{LEM} does not require any statistical information of the system dynamics for implementation, and efficiently resolves the challenging energy outage problem. We show that LEM\mathtt{LEM} achieves the near-optimal [O(ϵ),O(log(1/ϵ)2)][O(\epsilon), O(\log(1/\epsilon)^2)] utility-delay tradeoff with an O(1/ϵ1c/2)O(1/\epsilon^{1-c/2}) energy buffers (c(0,1)c\in(0,1)). More interestingly, LEM\mathtt{LEM} possesses a \emph{convergence time} of O(1/ϵ1c/2+1/ϵc)O(1/\epsilon^{1-c/2} +1/\epsilon^c), which is much faster than the Θ(1/ϵ)\Theta(1/\epsilon) time of pure queue-based techniques or the Θ(1/ϵ2)\Theta(1/\epsilon^2) time of approaches that rely purely on learning the system statistics. This fast convergence property makes LEM\mathtt{LEM} more adaptive and efficient in resource allocation in dynamic environments. The design and analysis of LEM\mathtt{LEM} demonstrate how system control algorithms can be augmented by learning and what the benefits are. The methodology and algorithm can also be applied to similar problems, e.g., processing networks, where nodes require nonzero amount of contents to support their actions

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(ϵ)[O(\epsilon), O(log(1/ϵ)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(ϵ),O(log2(1/ϵ)[O(\epsilon), O(\log^2(1/\epsilon) +min(ϵc/21,ew/ϵ))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max(ϵc,ew2)ϵ1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(ϵ2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min(ϵ1+c/2,ew/ϵ)+log2(1/ϵ))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs
    corecore