908,963 research outputs found

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Development of an LED display system for cross-track distance and velocity for Loran-C flight

    Get PDF
    The methodology for estimating cross-track velocity by combining rate-gyro and Loran-C data is illustrated in block diagrams. At present, preliminary analysis has established values for K sub 1, K sub 2, the parameters of the digital control loops. A computer program was written to implement a digital simulation of the system as illustrated. Given a model for the noise in the rate-gyro and Loran-C receiver, and their dynamic response, the simulation provides a working model to establish good control loop parameters. The layout of the LED display for flight testing of Loran-C approach flying, which was constructed during a visit to Langley Research Center, is shown. Four bar-graph LED displays are paired to provide cross-track distance and velocity from a Loran-C defined runway centerline. Two seven-segment LED displays are used to provide alphanumeric readout of range to touchdown and desired height. A metal case was built, a circuit board designed, and manufactured with the assistance of NASA Langley personnel

    The rites of man: The British Museum and the sexual imagination in Victorian Britain

    Get PDF
    In the nineteenth century, the British Museum possessed a locked store of erotic objects. However, this did not serve to sanitize the rest of the collection. I use the evidence of an anonymous tract, Idolomania, set in the context of other literary productions of the time, to show how a wave of anti-Catholic agitation led to claims that the public displays of the British Museum were saturated with morally dangerous material. A wide range of objects, images and motifs were interpreted as evidence of pagan fertility cults, thus throwing into question the seemliness of the Museum's public displays. However, I use the evidence of an anonymous early Victorian tract, Idolomania, set in the context of other literary productions of its times, to show that the early Victorian wave of anti-Catholic moral panic led to claims that the public displays of the British Museum were saturated with morally dangerous material. Although I cannot and do not claim that this was a mainstream view, I do use this tract to emphasise that there is a ongoing tradition of eroticised readings of sculpture galleries, even ones supposedly purged of explicitly sexual material. That this fact is not widely recognised may be to do with dominant conceptualisations of the separation between art and pornography that date from the Victorian age. Much classical and Hindu statuary may indeed have been intended indirectly if not directly to produce erotic responses. And it we want to fully engage with the power of bodily representations in museum collections it may be sensible to openly acknowledge sexual fetishism as a social construction and, therefore, the diversity and unpredictability of arousal

    LED instrument approach instruction display

    Get PDF
    A display employing light emitting diodes (LED's) was developed to demonstrate the feasibility of such displays for presenting landing and navigation information to reduce the workload of general aviation pilots during IFR flight. The display consists of a paper tape reader, digital memory, control electronics, digital latches, and LED alphanumeric displays. A presentable digital countdown clock-timer is included as part of the system to provide a convenient means of monitoring time intervals for precise flight navigation. The system is a limited capability prototype assembled to test pilot reaction to such a device under simulated IFR operation. Pilot opinion indicates that the display is helpful in reducing the IFR pilots workload when used with a runway approach plate. However, the development of a compact, low power second generation display was recommended which could present several instructions simultaneously and provide information update capability. A microprocessor-based display could fulfill these requirements

    Smart Cities: Towards a New Citizenship Regime? A Discourse Analysis of the British Smart City Standard

    Get PDF
    Growing practice interest in smart cities has led to calls for a less technology-oriented and more citizen-centric approach. In response, this articles investigates the citizenship mode promulgated by the smart city standard of the British Standards Institution. The analysis uses the concept of citizenship regime and a mixture of quantitative and qualitative methods to discern key discursive frames defining the smart city and the particular citizenship dimensions brought into play. The results confirm an explicit citizenship rationale guiding the smart city (standard), although this displays some substantive shortcomings and contradictions. The article concludes with recommendations for both further theory and practice development

    Efficient and compact illumination in LED projection displays

    Get PDF
    In this paper we propose an efficient illumination engine for LED based projection systems. Our design had to be both compact and efficient. We designed the projector with two LCOS light panels. We investigate two phenomena that affect the optical efficiency of this projector. We show that a relevant gain of the light output can be obtained by using certain methods

    Knowledge representation in space flight operations

    Get PDF
    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text

    SWiM: A Simple Window Mover

    Full text link
    As computers become more ubiquitous, traditional two-dimensional interfaces must be replaced with interfaces based on a three-dimensional metaphor. However, these interfaces must still be as simple and functional as their two-dimensional predecessors. This paper introduces SWiM, a new interface for moving application windows between various screens, such as wall displays, laptop monitors, and desktop displays, in a three-dimensional physical environment. SWiM was designed based on the results of initial "paper and pencil" user tests of three possible interfaces. The results of these tests led to a map-like interface where users select the destination display for their application from various icons. If the destination is a mobile display it is not displayed on the map. Instead users can select the screen's name from a list of all possible destination displays. User testing of SWiM was conducted to discover whether it is easy to learn and use. Users that were asked to use SWiM without any instructions found the interface as intuitive to use as users who were given a demonstration. The results show that SWiM combines simplicity and functionality to create an interface that is easy to learn and easy to use.Comment: 7 pages, 4 figure

    A system for synthetic vision and augmented reality in future flight decks

    Get PDF
    Rockwell Science Center is investigating novel human-computer interaction techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays that provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information. Orientation of the camera is obtained from an inclinometer and a magnetometer; position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual cues with database features. This technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background with an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer
    corecore