1,730 research outputs found

    LDPC Code Design for the Two-User Gaussian Multiple Access Channel

    Get PDF
    We study code design for two-user Gaussian multiple access channels (GMACs) under fixed channel gains and under quasi-static fading. We employ low-density parity-check (LDPC) codes with BPSK modulation and utilize an iterative joint decoder. Adopting a belief propagation (BP) algorithm, we derive the PDF of the log-likelihood-ratios (LLRs) fed to the component LDPC decoders. Via examples, it is illustrated that the characterized PDF resembles a Gaussian mixture (GM) distribution, which is exploited in predicting the decoding performance of LDPC codes over GMACs. Based on the GM assumption, we propose variants of existing analysis methods, named modified density evolution (DE) and modified extrinsic information transfer (EXIT). We derive a stability condition on the degree distributions of the LDPC code ensembles and utilize it in the code optimization. Under fixed channel gains, the newly optimized codes are shown to perform close to the capacity region boundary outperforming the existing designs and the off-the-shelf point-to-point (P2P) codes. Under quasi-static fading, optimized codes exhibit consistent improvements upon the P2P codes as well. Finite block length simulations of specific codes picked from the designed ensembles are also carried out and it is shown that optimized codes perform close to the outage limits. © 2015 IEEE

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Sub-graph based joint sparse graph for sparse code multiple access systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches
    corecore