41,830 research outputs found

    Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays

    Get PDF
    Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers

    Channelized hotelling observers for signal detection in stack-mode reading of volumetric images on medical displays with slow response time

    Get PDF
    Volumetric medical images are commonly read in stack-browsing mode. However, previous studies suggest that slow temporal response of medical liquid crystal displays may degrade the diagnostic accuracy (lesion detectability) at browsing rates as low as 10 frames per second (fps). Recently, a multi-slice channelized Hotelling observer (msCHO) model was proposed to estimate the detection performance in 3D images. This implementation of the msCHO restricted the analysis to the luminance of a display pixel at the end of the frame time (end-of-frame luminance) while ignoring the luminance transition within the frame time (intra-frame luminance). Such an approach fails to differentiate between, for example, the commonly found case of two displays with different temporal profiles of luminance as long as their end-of-frame luminance levels are the same. In order to overcome this limitation of the msCHO, we propose a new upsampled msCHO (umsCHO) which acts on images obtained using both the intra-frame and the end-of-frame luminance information. The two models are compared on a set of synthesized 3D images for a range of browsing rates (16.67, 25 and 50 fps). Our results demonstrate that, depending on the details of the luminance transition profiles, neglecting the intra-frame luminance information may lead to over- or underestimation of lesion detectability. Therefore, we argue that using the umsCHO rather than msCHO model is more appropriate for estimating the detection performance in the stack-browsing mode

    Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks

    Full text link
    Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks (HetNets). In this paper, we consider a cluster-centric SCN with combined design of cooperative caching and transmission policy. Small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity. We propose a combined caching scheme where part of the available cache space is reserved for caching the most popular content in every SBS, while the remaining is used for cooperatively caching different partitions of the less popular content in different SBSs, as a means to increase local content diversity. Depending on the availability and placement of the requested content, coordinated multipoint (CoMP) technique with either joint transmission (JT) or parallel transmission (PT) is used to deliver content to the served user. Using Poisson point process (PPP) for the SBS location distribution and a hexagonal grid model for the clusters, we provide analytical results on the successful content delivery probability of both transmission schemes for a user located at the cluster center. Our analysis shows an inherent tradeoff between transmission diversity and content diversity in our combined caching-transmission design. We also study optimal cache space assignment for two objective functions: maximization of the cache service performance and the energy efficiency. Simulation results show that the proposed scheme achieves performance gain by leveraging cache-level and signal-level cooperation and adapting to the network environment and user QoS requirements.Comment: 13 pages, 10 figures, submitted for possible journal publicatio

    On Low Complexity Detection for QAM Isomorphic Constellations

    Get PDF
    Despite of the known gap from the Shannon's capacity, several standards are still employing QAM or star shape constellations, mainly due to the existing low complexity detectors. In this paper, we investigate the low complexity detection for a family of QAM isomorphic constellations. These constellations are known to perform very close to the peak-power limited capacity, outperforming the DVB-S2X standard constellations. The proposed strategy is to first remap the received signals to the QAM constellation using the existing isomorphism and then break the log likelihood ratio computations to two one dimensional PAM constellations. Gains larger than 0.6 dB with respect to QAM can be obtained over the peak power limited channels without any increase in detection complexity. Our scheme also provides a systematic way to design constellations with low complexity one dimensional detectors. Several open problems are discussed at the end of the paper.Comment: Submitted to IEEE GLOBECOM 201

    A Compressive Multi-Mode Superresolution Display

    Get PDF
    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.Comment: Technical repor

    Performance of shortcut-to-adiabaticity quantum engines

    Full text link
    We consider a paradigmatic quantum harmonic Otto engine operating in finite time. We investigate its performance when shortcut-to-adiabaticity techniques are used to speed up its cycle. We compute efficiency and power by taking the energetic cost of the shortcut driving explicitly into account. We analyze in detail three different shortcut methods, counterdiabatic driving, local counterdiabatic driving and inverse engineering. We demonstrate that all three lead to a simultaneous increase of efficiency and power for fast cycles, thus outperforming traditional heat engines.Comment: 6 page
    corecore