36,118 research outputs found

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.Comment: 16 pages, 6 figure

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions

    Evasiveness and the Distribution of Prime Numbers

    Get PDF
    We confirm the eventual evasiveness of several classes of monotone graph properties under widely accepted number theoretic hypotheses. In particular we show that Chowla's conjecture on Dirichlet primes implies that (a) for any graph HH, "forbidden subgraph HH" is eventually evasive and (b) all nontrivial monotone properties of graphs with n3/2ϵ\le n^{3/2-\epsilon} edges are eventually evasive. (nn is the number of vertices.) While Chowla's conjecture is not known to follow from the Extended Riemann Hypothesis (ERH, the Riemann Hypothesis for Dirichlet's LL functions), we show (b) with the bound O(n5/4ϵ)O(n^{5/4-\epsilon}) under ERH. We also prove unconditional results: (a') for any graph HH, the query complexity of "forbidden subgraph HH" is (n2)O(1)\binom{n}{2} - O(1); (b') for some constant c>0c>0, all nontrivial monotone properties of graphs with cnlogn+O(1)\le cn\log n+O(1) edges are eventually evasive. Even these weaker, unconditional results rely on deep results from number theory such as Vinogradov's theorem on the Goldbach conjecture. Our technical contribution consists in connecting the topological framework of Kahn, Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002), with a deeper analysis of the orbital structure of permutation groups and their connection to the distribution of prime numbers. Our unconditional results include stronger versions and generalizations of some result of Chakrabarti et al.Comment: 12 pages (conference version for STACS 2010

    Monotone graph limits and quasimonotone graphs

    Full text link
    The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (Gn)(G_n) of graphs in terms of a limiting object which may be represented by a symmetric function WW on [0,1][0,1], i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a `quasi-monotonicity' property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L1L^1 norms of kernels of the form W1W2W_1-W_2 with W1W_1 and W2W_2 monotone that may be of interest in its own right; no such inequality holds for general kernels.Comment: 38 page

    Relating Graph Thickness to Planar Layers and Bend Complexity

    Get PDF
    The thickness of a graph G=(V,E)G=(V,E) with nn vertices is the minimum number of planar subgraphs of GG whose union is GG. A polyline drawing of GG in R2\mathbb{R}^2 is a drawing Γ\Gamma of GG, where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities are two important aesthetics of such a drawing. The bend complexity of Γ\Gamma is the maximum number of bends per edge in Γ\Gamma, and the layer complexity of Γ\Gamma is the minimum integer rr such that the set of polygonal chains in Γ\Gamma can be partitioned into rr disjoint sets, where each set corresponds to a planar polyline drawing. Let GG be a graph of thickness tt. By F\'{a}ry's theorem, if t=1t=1, then GG can be drawn on a single layer with bend complexity 00. A few extensions to higher thickness are known, e.g., if t=2t=2 (resp., t>2t>2), then GG can be drawn on tt layers with bend complexity 2 (resp., 3n+O(1)3n+O(1)). However, allowing a higher number of layers may reduce the bend complexity, e.g., complete graphs require Θ(n)\Theta(n) layers to be drawn using 0 bends per edge. In this paper we present an elegant extension of F\'{a}ry's theorem to draw graphs of thickness t>2t>2. We first prove that thickness-tt graphs can be drawn on tt layers with 2.25n+O(1)2.25n+O(1) bends per edge. We then develop another technique to draw thickness-tt graphs on tt layers with bend complexity, i.e., O(2tn1(1/β))O(\sqrt{2}^{t} \cdot n^{1-(1/\beta)}), where β=2(t2)/2\beta = 2^{\lceil (t-2)/2 \rceil }. Previously, the bend complexity was not known to be sublinear for t>2t>2. Finally, we show that graphs with linear arboricity kk can be drawn on kk layers with bend complexity 3(k1)n(4k2)\frac{3(k-1)n}{(4k-2)}.Comment: A preliminary version appeared at the 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016
    corecore