1,545 research outputs found

    Hyperbolic intersection graphs and (quasi)-polynomial time

    Full text link
    We study unit ball graphs (and, more generally, so-called noisy uniform ball graphs) in dd-dimensional hyperbolic space, which we denote by Hd\mathbb{H}^d. Using a new separator theorem, we show that unit ball graphs in Hd\mathbb{H}^d enjoy similar properties as their Euclidean counterparts, but in one dimension lower: many standard graph problems, such as Independent Set, Dominating Set, Steiner Tree, and Hamiltonian Cycle can be solved in 2O(n11/(d1))2^{O(n^{1-1/(d-1)})} time for any fixed d3d\geq 3, while the same problems need 2O(n11/d)2^{O(n^{1-1/d})} time in Rd\mathbb{R}^d. We also show that these algorithms in Hd\mathbb{H}^d are optimal up to constant factors in the exponent under ETH. This drop in dimension has the largest impact in H2\mathbb{H}^2, where we introduce a new technique to bound the treewidth of noisy uniform disk graphs. The bounds yield quasi-polynomial (nO(logn)n^{O(\log n)}) algorithms for all of the studied problems, while in the case of Hamiltonian Cycle and 33-Coloring we even get polynomial time algorithms. Furthermore, if the underlying noisy disks in H2\mathbb{H}^2 have constant maximum degree, then all studied problems can be solved in polynomial time. This contrasts with the fact that these problems require 2Ω(n)2^{\Omega(\sqrt{n})} time under ETH in constant maximum degree Euclidean unit disk graphs. Finally, we complement our quasi-polynomial algorithm for Independent Set in noisy uniform disk graphs with a matching nΩ(logn)n^{\Omega(\log n)} lower bound under ETH. This shows that the hyperbolic plane is a potential source of NP-intermediate problems.Comment: Short version appears in SODA 202

    Colouring exact distance graphs of chordal graphs

    Full text link
    For a graph G=(V,E)G=(V,E) and positive integer pp, the exact distance-pp graph G[p]G^{[\natural p]} is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance pp. Recently, there has been an effort to obtain bounds on the chromatic number χ(G[p])\chi(G^{[\natural p]}) of exact distance-pp graphs for GG from certain classes of graphs. In particular, if a graph GG has tree-width tt, it has been shown that χ(G[p])O(pt1)\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t-1}) for odd pp, and χ(G[p])O(ptΔ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t}\Delta(G)) for even pp. We show that if GG is chordal and has tree-width tt, then χ(G[p])O(pt2)\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2) for odd pp, and χ(G[p])O(pt2Δ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2 \Delta(G)) for even pp. If we could show that for every graph HH of tree-width tt there is a chordal graph GG of tree-width tt which contains HH as an isometric subgraph (i.e., a distance preserving subgraph), then our results would extend to all graphs of tree-width tt. While we cannot do this, we show that for every graph HH of genus gg there is a graph GG which is a triangulation of genus gg and contains HH as an isometric subgraph.Comment: 11 pages, 2 figures. Versions 2 and 3 include minor changes, which arise from reviewers' comment

    Density of Range Capturing Hypergraphs

    Full text link
    For a finite set XX of points in the plane, a set SS in the plane, and a positive integer kk, we say that a kk-element subset YY of XX is captured by SS if there is a homothetic copy SS' of SS such that XS=YX\cap S' = Y, i.e., SS' contains exactly kk elements from XX. A kk-uniform SS-capturing hypergraph H=H(X,S,k)H = H(X,S,k) has a vertex set XX and a hyperedge set consisting of all kk-element subsets of XX captured by SS. In case when k=2k=2 and SS is convex these graphs are planar graphs, known as convex distance function Delaunay graphs. In this paper we prove that for any k2k\geq 2, any XX, and any convex compact set SS, the number of hyperedges in H(X,S,k)H(X,S,k) is at most (2k1)Xk2+1i=1k1ai(2k-1)|X| - k^2 + 1 - \sum_{i=1}^{k-1}a_i, where aia_i is the number of ii-element subsets of XX that can be separated from the rest of XX with a straight line. In particular, this bound is independent of SS and indeed the bound is tight for all "round" sets SS and point sets XX in general position with respect to SS. This refines a general result of Buzaglo, Pinchasi and Rote stating that every pseudodisc topological hypergraph with vertex set XX has O(k2X)O(k^2|X|) hyperedges of size kk or less.Comment: new version with a tight result and shorter proo

    On the probability of planarity of a random graph near the critical point

    Get PDF
    Consider the uniform random graph G(n,M)G(n,M) with nn vertices and MM edges. Erd\H{o}s and R\'enyi (1960) conjectured that the limit \lim_{n \to \infty} \Pr\{G(n,\textstyle{n\over 2}) is planar}} exists and is a constant strictly between 0 and 1. \L uczak, Pittel and Wierman (1994) proved this conjecture and Janson, \L uczak, Knuth and Pittel (1993) gave lower and upper bounds for this probability. In this paper we determine the exact probability of a random graph being planar near the critical point M=n/2M=n/2. For each λ\lambda, we find an exact analytic expression for p(λ)=limnPrG(n,n2(1+λn1/3))isplanar. p(\lambda) = \lim_{n \to \infty} \Pr{G(n,\textstyle{n\over 2}(1+\lambda n^{-1/3})) is planar}. In particular, we obtain p(0)0.99780p(0) \approx 0.99780. We extend these results to classes of graphs closed under taking minors. As an example, we show that the probability of G(n,n2)G(n,\textstyle{n\over 2}) being series-parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a concise way several basic properties we need of a random graph near the critical point.Comment: 10 pages, 1 figur

    Disjoint list-colorings for planar graphs

    Full text link
    One of Thomassen's classical results is that every planar graph of girth at least 55 is 3-choosable. One can wonder if for a planar graph GG of girth sufficiently large and a 33-list-assignment LL, one can do even better. Can one find 33 disjoint LL-colorings (a packing), or 22 disjoint LL-colorings, or a collection of LL-colorings that to every vertex assigns every color on average in one third of the cases (a fractional packing)? We prove that the packing is impossible, but two disjoint LL-colorings are guaranteed if the girth is at least 88, and a fractional packing exists when the girth is at least 6.6. For a graph GG, the least kk such that there are always kk disjoint proper list-colorings whenever we have lists all of size kk associated to the vertices is called the list packing number of GG. We lower the two-times-degeneracy upper bound for the list packing number of planar graphs of girth 3,43,4 or 55. As immediate corollaries, we improve bounds for ϵ\epsilon-flexibility of classes of planar graphs with a given girth. For instance, where previously Dvo\v{r}\'{a}k et al. proved that planar graphs of girth 66 are (weighted) ϵ\epsilon-flexibly 33-choosable for an extremely small value of ϵ\epsilon, we obtain the optimal value ϵ=13\epsilon=\frac{1}{3}. Finally, we completely determine and show interesting behavior on the packing numbers for HH-minor-free graphs for some small graphs H.H.Comment: 36 pages, 8 figure
    corecore