5,883 research outputs found

    Adaptive estimation of spectral densities via wavelet thresholding and information projection

    Get PDF
    In this paper, we study the problem of adaptive estimation of the spectral density of a stationary Gaussian process. For this purpose, we consider a wavelet-based method which combines the ideas of wavelet approximation and estimation by information projection in order to warrants that the solution is a nonnegative function. The spectral density of the process is estimated by projecting the wavelet thresholding expansion of the periodogram onto a family of exponential functions. This ensures that the spectral density estimator is a strictly positive function. Then, by Bochner's theorem, the corresponding estimator of the covariance function is semidefinite positive. The theoretical behavior of the estimator is established in terms of rate of convergence of the Kullback-Leibler discrepancy over Besov classes. We also show the excellent practical performance of the estimator in some numerical experiments

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    Rational approximations of spectral densities based on the Alpha divergence

    Full text link
    We approximate a given rational spectral density by one that is consistent with prescribed second-order statistics. Such an approximation is obtained by minimizing a suitable distance from the given spectrum and under the constraints corresponding to imposing the given second-order statistics. Here, we consider the Alpha divergence family as a distance measure. We show that the corresponding approximation problem leads to a family of rational solutions. Secondly, such a family contains the solution which generalizes the Kullback-Leibler solution proposed by Georgiou and Lindquist in 2003. Finally, numerical simulations suggest that this family contains solutions close to the non-rational solution given by the principle of minimum discrimination information.Comment: to appear in the Mathematics of Control, Signals, and System

    On the well-posedness of multivariate spectrum approximation and convergence of high-resolution spectral estimators

    Full text link
    In this paper, we establish the well-posedness of the generalized moment problems recently studied by Byrnes-Georgiou-Lindquist and coworkers, and by Ferrante-Pavon-Ramponi. We then apply these continuity results to prove almost sure convergence of a sequence of high-resolution spectral estimators indexed by the sample size

    Multivariate Spectral Estimation based on the concept of Optimal Prediction

    Full text link
    In this technical note, we deal with a spectrum approximation problem arising in THREE-like multivariate spectral estimation approaches. The solution to the problem minimizes a suitable divergence index with respect to an a priori spectral density. We derive a new divergence family between multivariate spectral densities which takes root in the prediction theory. Under mild assumptions on the a priori spectral density, the approximation problem, based on this new divergence family, admits a family of solutions. Moreover, an upper bound on the complexity degree of these solutions is provided

    On the existence of a solution to a spectral estimation problem \emph{\`a la} Byrnes-Georgiou-Lindquist

    Full text link
    A parametric spectral estimation problem in the style of Byrnes, Georgiou, and Lindquist was posed in \cite{FPZ-10}, but the existence of a solution was only proved in a special case. Based on their results, we show that a solution indeed exists given an arbitrary matrix-valued prior density. The main tool in our proof is the topological degree theory.Comment: 6 pages of two-column draft, accepted for publication in IEEE-TA

    An Interpretation of the Dual Problem of the THREE-like Approaches

    Full text link
    Spectral estimation can be preformed using the so called THREE-like approach. Such method leads to a convex optimization problem whose solution is characterized through its dual problem. In this paper, we show that the dual problem can be seen as a new parametric spectral estimation problem. This interpretation implies that the THREE-like solution is optimal in terms of closeness to the correlogram over a certain parametric class of spectral densities, enriching in this way its meaningfulness

    A globally convergent matricial algorithm for multivariate spectral estimation

    Full text link
    In this paper, we first describe a matricial Newton-type algorithm designed to solve the multivariable spectrum approximation problem. We then prove its global convergence. Finally, we apply this approximation procedure to multivariate spectral estimation, and test its effectiveness through simulation. Simulation shows that, in the case of short observation records, this method may provide a valid alternative to standard multivariable identification techniques such as MATLAB's PEM and MATLAB's N4SID
    • …
    corecore