5,506 research outputs found

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    A Numerical Method to solve Optimal Transport Problems with Coulomb Cost

    Get PDF
    In this paper, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases

    Thermodynamic assessment of probability distribution divergencies and Bayesian model comparison

    Full text link
    Within path sampling framework, we show that probability distribution divergences, such as the Chernoff information, can be estimated via thermodynamic integration. The Boltzmann-Gibbs distribution pertaining to different Hamiltonians is implemented to derive tempered transitions along the path, linking the distributions of interest at the endpoints. Under this perspective, a geometric approach is feasible, which prompts intuition and facilitates tuning the error sources. Additionally, there are direct applications in Bayesian model evaluation. Existing marginal likelihood and Bayes factor estimators are reviewed here along with their stepping-stone sampling analogues. New estimators are presented and the use of compound paths is introduced

    Maximally Divergent Intervals for Anomaly Detection

    Full text link
    We present new methods for batch anomaly detection in multivariate time series. Our methods are based on maximizing the Kullback-Leibler divergence between the data distribution within and outside an interval of the time series. An empirical analysis shows the benefits of our algorithms compared to methods that treat each time step independently from each other without optimizing with respect to all possible intervals.Comment: ICML Workshop on Anomaly Detectio
    • …
    corecore