5 research outputs found

    Kripke Semantics for Fuzzy Logics

    Get PDF
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. It turns out that the only fuzzy logics (logics containing the basic fuzzy logic) which are sound and complete with respect to a class of Kripke frames/models are the extensions of the Gödel logic (or the super-intuitionistic logic of Dummett); indeed this logic is sound and strongly complete with respect to reflexive, transitive and connected (linear) Kripke frames (with persistent satisfaction relations). This provides a semantic characterization for the Gödel logic among (propositional) fuzzy logics

    From Intuitionism to Many-Valued Logics Through Kripke Models

    Get PDF
    Intuitionistic Propositional Logic is proved to be an infinitely many valued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936, Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes du Congrés International de Philosophie Scientifique, VI. Philosophie des Mathématiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably many valued logic. In this paper, we provide alternative proofs for these theorems by using models of Kripke (J Symbol Logic 24(1):1–14, 1959). Gödel’s proof gave rise to an intermediate propositional logic (between intuitionistic and classical), that is known nowadays as Gödel or the Gödel-Dummett Logic, and is studied by fuzzy logicians as well. We also provide some results on the inter-definability of propositional connectives in this logic

    Conjuntos construibles en modelos valuados en retĂ­culos

    Get PDF
    We investigate different set-theoretic constructions in Residuated Logic based on Fitting’s work on Intuitionistic Kripke models of Set Theory. Firstly, we consider constructable sets within valued models of Set Theory. We present two distinct constructions of the constructable universe: L B and L B , and prove that the they are isomorphic to V (von Neumann universe) and L (Gödel’s constructible universe), respectively. Secondly, we generalize Fitting’s work on Intuitionistic Kripke models of Set Theory using Ono and Komori’s Residuated Kripke models. Based on these models, we provide a general- ization of the von Neumann hierarchy in the context of Modal Residuated Logic and prove a translation of formulas between it and a suited Heyting valued model. We also propose a notion of universe of constructable sets in Modal Residuated Logic and discuss some aspects of it.Investigamos diferentes construcciones de la teoría de conjuntos en Lógica Residual basados en el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la Teoría de Conjuntos. En primer lugar, consideramos conjuntos construibles dentro de modelos valuados de la Teoría de Conjuntos. Presentamos dos construcciones distintas del universo construible: L B y L B , y demostramos que son isomorfos a V (universo von Neumann) y L (universo construible de Gödel), respectivamente. En segundo lugar, generalizamos el trabajo de Fitting sobre los modelos intuicionistas de Kripke de la teoría de conjuntos utilizando los modelos residuados de Kripke de Ono y Komori. Con base en estos modelos, proporcionamos una generalización de la jerarquía de von Neumann en el contexto de la Lógica Modal Residuada y demostramos una traducción de fórmulas entre ella y un modelo Heyting valuado adecuado. También proponemos una noción de universo de conjuntos construibles en Lógica Modal Residuada y discutimos algunos aspectos de la misma. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - MatemáticasLógica matemática, teoría de conjunto

    Constructive Fuzzy Logics

    Get PDF
    We generalise Kripke’s semantics for Intuitionistic logic to Hajek’s BL and consider the constructive subsystems of GBLewf and Intuitionistic Affine logic or ALi. The genesis of our semantics is the Poset Product construction for GBL-algebras elucidated in a series of papers by Peter Jipsen, Simone Bova, and Franco Montagna. We present natural deduction systems for all of these systems and corresponding deduction theorems for these same. We present the algebraic semantics for each of the logics under consideration, demonstrate their soundness and completeness with respect to these algebraic semantics. We also show how the classical Kripke semantics for Intuitionistic logic can be recast in terms of Poset Products. We then proceed to the main results, showing how a very natural generalisation of the Kripke semantics holds for each of GBLewf , ALi and Hajek’s BL based on the embedding results of Jipsen and Montagna and the decidability results of Bova and Montagna. We demonstrate soundness and completeness of the logics under our semantics in each case, with the exception of ALi, whose robust completeness with respect to the intended models (relational models with frames valued in involutive pocrims) we leave as an open problem for the ambitious reader
    corecore