2,126 research outputs found

    Time-reversal symmetric U(1) quantum spin liquids

    Get PDF
    We study possible quantum U(1)U(1) spin liquids in three dimensions with time-reversal symmetry. We find a total of 7 families of such U(1)U(1) spin liquids, distinguished by the properties of their emergent electric/magnetic charges. We show how these spin liquids are related to each other. Two of these classes admit nontrivial protected surface states which we describe. We show how to access all of the 7 spin liquids through slave particle (parton) constructions. We also provide intuitive loop gas descriptions of their ground state wave functions. One of these phases is the `topological Mott insulator' conventionally described as a topological insulator of an emergent fermionic `spinon'. We show that this phase admits a remarkable dual description as a topological insulator of emergent fermionic magnetic monopoles. This results in a new (possibly natural) surface phase for the topological Mott insulator and a new slave particle construction. We describe some of the continuous quantum phase transitions between the different U(1)U(1) spin liquids. Each of these seven families of states admits a finer distinction in terms of their surface properties which we determine by combining these spin liquids with symmetry protected topological phases. We discuss lessons for materials such as pyrochlore quantum spin ices which may harbor a U(1)U(1) spin liquid. We suggest the topological Mott insulator as a possible ground state in some range of parameters for the quantum spin ice Hamiltonian.Comment: 25 pages, 11 figures, 1 tabl

    Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems

    Full text link
    This paper clarifies the microscopic nature of the staggered scalar order, which is specific to even number of f electrons per site. In such systems, crystalline electric field (CEF) can make a singlet ground state. As exchange interaction with conduction electrons increases, the CEF singlet at each site gives way to Kondo singlets. The collective Kondo singlets are identified with itinerant states that form energy bands. Near the boundary of itinerant and localized states, a new type of electronic order appears with staggered Kondo and CEF singlets. We present a phenomenological three-state model that qualitatively reproduces the characteristic phase diagram, which have been obtained numerically with use of the continuous-time quantum Monte Carlo combined with the dynamical mean-field theory. The scalar order observed in PrFe_4P_{12} is ascribed to this staggered order accompanying charge density wave (CDW) of conduction electrons. Accurate photoemission and tunneling spectroscopy should be able to probe sharp peaks below and above the Fermi level in the ordered phase.Comment: 7 pages, 8 figure

    Computing transition rates for the 1-D stochastic Ginzburg--Landau--Allen--Cahn equation for finite-amplitude noise with a rare event algorithm

    Get PDF
    In this paper we compute and analyse the transition rates and duration of reactive trajectories of the stochastic 1-D Allen-Cahn equations for both the Freidlin-Wentzell regime (weak noise or temperature limit) and finite-amplitude white noise, as well as for small and large domain. We demonstrate that extremely rare reactive trajectories corresponding to direct transitions between two metastable states are efficiently computed using an algorithm called adaptive multilevel splitting. This algorithm is dedicated to the computation of rare events and is able to provide ensembles of reactive trajectories in a very efficient way. In the small noise limit, our numerical results are in agreement with large-deviation predictions such as instanton-like solutions, mean first passages and escape probabilities. We show that the duration of reactive trajectories follows a Gumbel distribution like for one degree of freedom systems. Moreover, the mean duration growths logarithmically with the inverse temperature. The prefactor given by the potential curvature grows exponentially with size. The main novelty of our work is that we also perform an analysis of reactive trajectories for large noises and large domains. In this case, we show that the position of the reactive front is essentially a random walk. This time, the mean duration grows linearly with the inverse temperature and quadratically with the size. Using a phenomenological description of the system, we are able to calculate the transition rate, although the dynamics is described by neither Freidlin--Wentzell or Eyring--Kramers type of results. Numerical results confirm our analysis

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    Dualities and non-Abelian mechanics

    Full text link
    Dualities are mathematical mappings that reveal unexpected links between apparently unrelated systems or quantities in virtually every branch of physics. Systems that are mapped onto themselves by a duality transformation are called self-dual and they often exhibit remarkable properties, as exemplified by an Ising magnet at the critical point. In this Letter, we unveil the role of dualities in mechanics by considering a family of so-called twisted Kagome lattices. These are reconfigurable structures that can change shape thanks to a collapse mechanism easily illustrated using LEGO. Surprisingly, pairs of distinct configurations along the mechanism exhibit the same spectrum of vibrational modes. We show that this puzzling property arises from the existence of a duality transformation between pairs of configurations on either side of a mechanical critical point. This critical point corresponds to a self-dual structure whose vibrational spectrum is two-fold degenerate over the entire Brillouin zone. The two-fold degeneracy originates from a general version of Kramers theorem that applies to classical waves in addition to quantum systems with fermionic time-reversal invariance. We show that the vibrational modes of the self-dual mechanical systems exhibit non-Abelian geometric phases that affect the semi-classical propagation of wave packets. Our results apply to linear systems beyond mechanics and illustrate how dualities can be harnessed to design metamaterials with anomalous symmetries and non-commuting responses.Comment: See http://home.uchicago.edu/~vitelli/videos.html for Supplementary Movi

    Domain wall propagation and nucleation in a metastable two-level system

    Full text link
    We present a dynamical description and analysis of non-equilibrium transitions in the noisy one-dimensional Ginzburg-Landau equation for an extensive system based on a weak noise canonical phase space formulation of the Freidlin-Wentzel or Martin-Siggia-Rose methods. We derive propagating nonlinear domain wall or soliton solutions of the resulting canonical field equations with superimposed diffusive modes. The transition pathways are characterized by the nucleations and subsequent propagation of domain walls. We discuss the general switching scenario in terms of a dilute gas of propagating domain walls and evaluate the Arrhenius factor in terms of the associated action. We find excellent agreement with recent numerical optimization studies.Comment: 28 pages, 16 figures, revtex styl
    • …
    corecore