7,256 research outputs found

    Renormalization and Computation II: Time Cut-off and the Halting Problem

    Full text link
    This is the second installment to the project initiated in [Ma3]. In the first Part, I argued that both philosophy and technique of the perturbative renormalization in quantum field theory could be meaningfully transplanted to the theory of computation, and sketched several contexts supporting this view. In this second part, I address some of the issues raised in [Ma3] and provide their development in three contexts: a categorification of the algorithmic computations; time cut--off and Anytime Algorithms; and finally, a Hopf algebra renormalization of the Halting Problem.Comment: 28 page

    Complexity vs Energy: Theory of Computation and Theoretical Physics

    Full text link
    This paper is a survey dedicated to the analogy between the notions of {\it complexity} in theoretical computer science and {\it energy} in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra, Geometry, Information", Tallinn, July 9-12, 201

    Complexity vs energy: theory of computation and theoretical physics

    No full text

    Renormalisation and computation II: time cut-off and the Halting Problem

    No full text

    Generic algorithms for halting problem and optimal machines revisited

    Full text link
    The halting problem is undecidable --- but can it be solved for "most" inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered in algorithmic information theory) using the notion of Kolmogorov complexity. We also consider some related questions about this framework and about asymptotic properties of the halting problem. In particular, we show that the fraction of terminating programs cannot have a limit, and all limit points are Martin-L\"of random reals. We then consider mass problems of finding an approximate solution of halting problem and probabilistic algorithms for them, proving both positive and negative results. We consider the fraction of terminating programs that require a long time for termination, and describe this fraction using the busy beaver function. We also consider approximate versions of separation problems, and revisit Schnorr's results about optimal numberings showing how they can be generalized.Comment: a preliminary version was presented at the ICALP 2015 conferenc

    A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences

    Get PDF
    Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity, and that lossless compression algorithms fall short at characterizing patterns other than statistical ones not different to entropy estimations, here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure mm calculated from the output distribution of small Turing machines. We introduce and justify finite approximations mkm_k that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both mm and mkm_k and compare them to Levin's Universal Distribution. We provide error estimations of mkm_k with respect to mm. Finally, we present an application to integer sequences from the Online Encyclopedia of Integer Sequences which suggests that our AP-based measures may characterize non-statistical patterns, and we report interesting correlations with textual, function and program description lengths of the said sequences.Comment: As accepted by the journal Complexity (Wiley/Hindawi
    corecore