3 research outputs found

    Knowledge-based segmentation of SAR data with learned priors

    Get PDF
    ©2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/83.821747An approach for the segmentation of still and video synthetic aperture radar (SAR) images is described in this note. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayes' rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show with examples from public data sets that this method provides an efficient and fast technique for addressing the segmentation of SAR data

    An Objective Evaluation of Four SAR Image Segmentation Algorithms

    Get PDF
    Because of the large number of SAR images the Air Force generates and the dwindling number of available human analysts, automated methods must be developed. A key step towards automated SAR image analysis is image segmentation. There are many segmentation algorithms, but they have not been tested on a common set of images, and there are no standard test methods. This thesis evaluates four SAR image segmentation algorithms by running them on a common set of data and objectively comparing them to each other and to human segmentors. This objective comparison uses a multi-metric a approach with a set of master segmentations as ground truth. The metric results are compared to a Human Threshold, which defines performance of human se mentors compared to the master segmentations. Also, methods that use the multi-metrics to determine the best algorithm are developed. These methods show that of the four algorithms, Statistical Curve Evolution produces the best segmentations; however, none of the algorithms are superior to human segmentors. Thus, with the Human Threshold and Statistical Curve Evolution as benchmarks, this thesis establishes a new and practical framework for testing SAR image segmentation algorithms
    corecore