32 research outputs found

    Interpretable End-to-End Driving Model for Implicit Scene Understanding

    Full text link
    Driving scene understanding is to obtain comprehensive scene information through the sensor data and provide a basis for downstream tasks, which is indispensable for the safety of self-driving vehicles. Specific perception tasks, such as object detection and scene graph generation, are commonly used. However, the results of these tasks are only equivalent to the characterization of sampling from high-dimensional scene features, which are not sufficient to represent the scenario. In addition, the goal of perception tasks is inconsistent with human driving that just focuses on what may affect the ego-trajectory. Therefore, we propose an end-to-end Interpretable Implicit Driving Scene Understanding (II-DSU) model to extract implicit high-dimensional scene features as scene understanding results guided by a planning module and to validate the plausibility of scene understanding using auxiliary perception tasks for visualization. Experimental results on CARLA benchmarks show that our approach achieves the new state-of-the-art and is able to obtain scene features that embody richer scene information relevant to driving, enabling superior performance of the downstream planning.Comment: Accepted by 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023

    Semantic Scene Graph Generation Based on an Edge Dual Scene Graph and Message Passing Neural Network

    Full text link
    Along with generative AI, interest in scene graph generation (SGG), which comprehensively captures the relationships and interactions between objects in an image and creates a structured graph-based representation, has significantly increased in recent years. However, relying on object-centric and dichotomous relationships, existing SGG methods have a limited ability to accurately predict detailed relationships. To solve these problems, a new approach to the modeling multiobject relationships, called edge dual scene graph generation (EdgeSGG), is proposed herein. EdgeSGG is based on a edge dual scene graph and Dual Message Passing Neural Network (DualMPNN), which can capture rich contextual interactions between unconstrained objects. To facilitate the learning of edge dual scene graphs with a symmetric graph structure, the proposed DualMPNN learns both object- and relation-centric features for more accurately predicting relation-aware contexts and allows fine-grained relational updates between objects. A comparative experiment with state-of-the-art (SoTA) methods was conducted using two public datasets for SGG operations and six metrics for three subtasks. Compared with SoTA approaches, the proposed model exhibited substantial performance improvements across all SGG subtasks. Furthermore, experiment on long-tail distributions revealed that incorporating the relationships between objects effectively mitigates existing long-tail problems

    Knowledge Graph Transfer Network for Few-Shot Recognition

    Full text link
    Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.Comment: accepted by AAAI 2020 as oral pape
    corecore