90 research outputs found

    Relating Knowledge and Coordinated Action: The Knowledge of Preconditions Principle

    Get PDF
    The Knowledge of Preconditions principle (KoP) is proposed as a widely applicable connection between knowledge and action in multi-agent systems. Roughly speaking, it asserts that if some condition is a necessary condition for performing a given action A, then knowing that this condition holds is also a necessary condition for performing A. Since the specifications of tasks often involve necessary conditions for actions, the KoP principle shows that such specifications induce knowledge preconditions for the actions. Distributed protocols or multi-agent plans that satisfy the specifications must ensure that this knowledge be attained, and that it is detected by the agents as a condition for action. The knowledge of preconditions principle is formalised in the runs and systems framework, and is proven to hold in a wide class of settings. Well-known connections between knowledge and coordinated action are extended and shown to derive directly from the KoP principle: a "common knowledge of preconditions" principle is established showing that common knowledge is a necessary condition for performing simultaneous actions, and a "nested knowledge of preconditions" principle is proven, showing that coordinating actions to be performed in linear temporal order requires a corresponding form of nested knowledge.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    Automated proof search system for logic of correlated knowledge

    Full text link
    The automated proof search system and decidability for logic of correlated knowledge is presented in this paper. The core of the proof system is the sequent calculus with the properties of soundness, completeness, admissibility of cut and structural rules, and invertibility of all rules. The proof search procedure based on the sequent calculus performs automated terminating proof search and allows us to achieve decision result for logic of correlated knowledge

    A note on knowledge-based programs and specifications

    Full text link
    Knowledge-based program are programs with explicit tests for knowledge. They have been used successfully in a number of applications. Sanders has pointed out what seem to be a counterintuitive property of knowledge-based programs. Roughly speaking, they do not satisfy a certain monotonicity property, while standard programs (ones without tests for knowledge) do. It is shown that there are two ways of defining the monotonicity property, which agree for standard programs. Knowledge-based programs satisfy the first, but do not satisfy the second. It is further argued by example that the fact that they do not satisfy the second is actually a feature, not a problem. Moreover, once we allow the more general class of knowledge-based specifications, standard programs do not satisfy the monotonicity property either.Comment: To appear, Distributed Computin

    Common Knowledge in Email Exchanges

    Full text link
    We consider a framework in which a group of agents communicates by means of emails, with the possibility of replies, forwards and blind carbon copies (BCC). We study the epistemic consequences of such email exchanges by introducing an appropriate epistemic language and semantics. This allows us to find out what agents learn from the emails they receive and to determine when a group of agents acquires common knowledge of the fact that an email was sent. We also show that in our framework from the epistemic point of view the BCC feature of emails cannot be simulated using messages without BCC recipients.Comment: 34 pages. To appear in ACM Transactions on Computational Logi

    Reasoning About Knowledge of Unawareness

    Full text link
    Awareness has been shown to be a useful addition to standard epistemic logic for many applications. However, standard propositional logics for knowledge and awareness cannot express the fact that an agent knows that there are facts of which he is unaware without there being an explicit fact that the agent knows he is unaware of. We propose a logic for reasoning about knowledge of unawareness, by extending Fagin and Halpern's \emph{Logic of General Awareness}. The logic allows quantification over variables, so that there is a formula in the language that can express the fact that ``an agent explicitly knows that there exists a fact of which he is unaware''. Moreover, that formula can be true without the agent explicitly knowing that he is unaware of any particular formula. We provide a sound and complete axiomatization of the logic, using standard axioms from the literature to capture the quantification operator. Finally, we show that the validity problem for the logic is recursively enumerable, but not decidable.Comment: 32 page

    Multi-Agent Only Knowing

    Full text link
    Levesque introduced a notion of ``only knowing'', with the goal of capturing certain types of nonmonotonic reasoning. Levesque's logic dealt with only the case of a single agent. Recently, both Halpern and Lakemeyer independently attempted to extend Levesque's logic to the multi-agent case. Although there are a number of similarities in their approaches, there are some significant differences. In this paper, we reexamine the notion of only knowing, going back to first principles. In the process, we simplify Levesque's completeness proof, and point out some problems with the earlier definitions. This leads us to reconsider what the properties of only knowing ought to be. We provide an axiom system that captures our desiderata, and show that it has a semantics that corresponds to it. The axiom system has an added feature of interest: it includes a modal operator for satisfiability, and thus provides a complete axiomatization for satisfiability in the logic K45.Comment: To appear, Journal of Logic and Computatio
    • …
    corecore