73 research outputs found

    Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Get PDF
    The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods). Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented

    Building Credit-Risk Evaluation Expert Systems Using Neural Network Rule Extraction and Decision Tables.

    Get PDF
    In this paper, we evaluate and contrast four neural network rule extraction approaches for credit scoring. Experiments are carried out on three real life credit scoring data sets. Both the continuous and the discretised versions of all data sets are analysed. The rule extraction algorithms, Neurolinear, Neurorule, Trepan and Nefclass, have different characteristics with respect to their perception of the neural network and their way of representing the generated rules or knowledge. It is shown that Neurolinear, Neurorule and Trepan are able to extract very concise rule sets or trees with a high predictive accuracy when compared to classical decision tree (rule) induction algorithms like C4.5(rules). Especially Neurorule extracted easy to understand and powerful propositional ifthen rules for all discretised data sets. Hence, the Neurorule algorithm may offer a viable alternative for rule generation and knowledge discovery in the domain of credit scoring.Credit; Information systems; International; Systems;

    Extracting Rules for Diagnosis of Diabetes Using Genetic Programming

    Get PDF
    Background: Diabetes is a global health challenge that cusses high incidence of major social and economic consequences. As such, early prevention or identification of those people at risk is crucial for reducing the problems caused by it. The aim of study was to extract the rules for diabetes diagnosing using genetic programming. Methods: This study utilized the PIMA dataset of the University of California, Irvine. This dataset consists of the information of 768 Pima heritage women, including 500 healthy persons and 268 persons with diabetes. Regarding the missing values and outliers in this dataset, the K-nearest neighbor and k-means methods are applied respectively. Moreover, a genetic programming model (GP) was conducted to diagnose diabetes as well as to determine the most important factors affecting it. Accuracy, sensitivity and specificity of the proposed model on the PIMA dataset were obtained as 79.32, 58.96 and 90.74%, respectively. Results: The experimental results of our model on PIMA revealed that age, PG concentration, BMI, Tri Fold Thick and Serum Ins were effective in diabetes mellitus and increased risk of diabetes. In addition, the good performance of the model coupled with the simplicity and comprehensiveness of the extracted rules is also shown by the experimental results. Conclusions: GPs can effectively implement the rules for diagnosing diabetes. Both BMI and PG Concentration are also the most important factors to increase the risk of suffering from diabetes. Keywords: Diabetes, PIMA, Genetic programming, KNNi, K-means, Missing value, Outlier detection, Rule extraction

    Hierarchical Classification Trees Using Type-Constrained Genetic Programming

    Get PDF

    Extracting Rules for Diagnosis of Diabetes Using Genetic Programming

    Get PDF
    Background: Diabetes is a global health challenge that cusses high incidence of major social and economic consequences. As such, early prevention or identification of those people at risk is crucial for reducing the problems caused by it. The aim of study was to extract the rules for diabetes diagnosing using genetic programming. Methods: This study utilized the PIMA dataset of the University of California, Irvine. This dataset consists of the information of 768 Pima heritage women, including 500 healthy persons and 268 persons with diabetes. Regarding the missing values and outliers in this dataset, the K-nearest neighbor and k-means methods are applied respectively. Moreover, a genetic programming model (GP) was conducted to diagnose diabetes as well as to determine the most important factors affecting it. Accuracy, sensitivity and specificity of the proposed model on the PIMA dataset were obtained as 79.32, 58.96 and 90.74%, respectively. Results: The experimental results of our model on PIMA revealed that age, PG concentration, BMI, Tri Fold Thick and Serum Ins were effective in diabetes mellitus and increased risk of diabetes. In addition, the good performance of the model coupled with the simplicity and comprehensiveness of the extracted rules is also shown by the experimental results. Conclusions: GPs can effectively implement the rules for diagnosing diabetes. Both BMI and PG Concentration are also the most important factors to increase the risk of suffering from diabetes. Keywords: Diabetes, PIMA, Genetic programming, KNNi, K-means, Missing value, Outlier detection, Rule extraction

    The Fuzzy-Neuro Classifier for Decision Support

    Get PDF
    This paper aims at development of procedures and algorithms for application of artificial intelligence tools to acquire process and analyze various types of knowledge. The proposed environment integrates techniques of knowledge and decision process modeling such as neural networks and fuzzy logic-based reasoning methods. The problem of an identification of complex processes with the use of neuro-fuzzy systems is solved. The proposed classifier has been successfully applied for building one decision support systems for solving managerial problem

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Intelligent System for Computer Aided Assembly Process Planning

    Get PDF
    This paper presents the concepts of the intelligent system for aiding of the module assembly technology. The first part of this paper presents a project of intelligent support system for computer aided assembly process planning. The second part includes a coincidence description of the chosen aspects of implementation of this intelligent system using technologies of artificial intelligence (artificial neural networks, fuzzy logic, expert systems and genetic algorithms)
    • …
    corecore