3,357 research outputs found

    On implicational bases of closure systems with unique critical sets

    Get PDF
    We show that every optimum basis of a finite closure system, in D.Maier's sense, is also right-side optimum, which is a parameter of a minimum CNF representation of a Horn Boolean function. New parameters for the size of the binary part are also established. We introduce a K-basis of a general closure system, which is a refinement of the canonical basis of Duquenne and Guigues, and discuss a polynomial algorithm to obtain it. We study closure systems with the unique criticals and some of its subclasses, where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Thus, closure systems without D-cycles can be effectively recognized. While E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem.Comment: Presented on International Symposium of Artificial Intelligence and Mathematics (ISAIM-2012), Ft. Lauderdale, FL, USA Results are included into plenary talk on conference Universal Algebra and Lattice Theory, June 2012, Szeged, Hungary 29 pages and 2 figure

    Geometric lattice structure of covering-based rough sets through matroids

    Get PDF
    Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Geometric lattice has widely used in diverse fields, especially search algorithm design which plays important role in covering reductions. In this paper, we construct four geometric lattice structures of covering-based rough sets through matroids, and compare their relationships. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by the covering, and its characteristics including atoms, modular elements and modular pairs are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, sufficient and necessary conditions for three types of covering upper approximation operators to be closure operators of matroids are presented. We exhibit three types of matroids through closure axioms, and then obtain three geometric lattice structures of covering-based rough sets. Third, these four geometric lattice structures are compared. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely geometric lattice, to study covering-based rough sets

    Bifurcation of hyperbolic planforms

    Get PDF
    Motivated by a model for the perception of textures by the visual cortex in primates, we analyse the bifurcation of periodic patterns for nonlinear equations describing the state of a system defined on the space of structure tensors, when these equations are further invariant with respect to the isometries of this space. We show that the problem reduces to a bifurcation problem in the hyperbolic plane D (Poincar\'e disc). We make use of the concept of periodic lattice in D to further reduce the problem to one on a compact Riemann surface D/T, where T is a cocompact, torsion-free Fuchsian group. The knowledge of the symmetry group of this surface allows to carry out the machinery of equivariant bifurcation theory. Solutions which generically bifurcate are called "H-planforms", by analogy with the "planforms" introduced for pattern formation in Euclidean space. This concept is applied to the case of an octagonal periodic pattern, where we are able to classify all possible H-planforms satisfying the hypotheses of the Equivariant Branching Lemma. These patterns are however not straightforward to compute, even numerically, and in the last section we describe a method for computation illustrated with a selection of images of octagonal H-planforms.Comment: 26 pages, 11 figure
    corecore