233,995 research outputs found

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spaces

    Get PDF
    Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search, as they achieve good predictive performance with little or no manual tuning, naturally handle discrete feature spaces, and are relatively insensitive to outliers in the training data. Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function. To address both points simultaneously, we propose using the kernel interpretation of tree ensembles as a Gaussian Process prior to obtain model variance estimates, and we develop a compatible optimization formulation for the acquisition function. The latter further allows us to seamlessly integrate known constraints to improve sampling efficiency by considering domain-knowledge in engineering settings and modeling search space symmetries, e.g., hierarchical relationships in neural architecture search. Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.Comment: 27 pages, 9 figures, 4 table

    Advances in nowcasting influenza-like illness rates using search query logs

    Get PDF
    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012–13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance

    Exploiting prior knowledge and latent variable representations for the statistical modeling and probabilistic querying of large knowledge graphs

    Get PDF
    Large knowledge graphs increasingly add great value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. These applications include Google search, Bing search, IBM’s Watson, but also smart mobile assistants as Apple’s Siri, Google Now or Microsoft’s Cortana. Popular knowledge graphs like DBpedia, YAGO or Freebase store a broad range of facts about the world, to a large extent derived from Wikipedia, currently the biggest web encyclopedia. In addition to these freely accessible open knowledge graphs, commercial ones have also evolved including the well-known Google Knowledge Graph or Microsoft’s Satori. Since incompleteness and veracity of knowledge graphs are known problems, the statistical modeling of knowledge graphs has increasingly gained attention in recent years. Some of the leading approaches are based on latent variable models which show both excellent predictive performance and scalability. Latent variable models learn embedding representations of domain entities and relations (representation learning). From these embeddings, priors for every possible fact in the knowledge graph are generated which can be exploited for data cleansing, completion or as prior knowledge to support triple extraction from unstructured textual data as successfully demonstrated by Google’s Knowledge-Vault project. However, large knowledge graphs impose constraints on the complexity of the latent embeddings learned by these models. For graphs with millions of entities and thousands of relation-types, latent variable models are required to exploit low dimensional embeddings for entities and relation-types to be tractable when applied to these graphs. The work described in this thesis extends the application of latent variable models for large knowledge graphs in three important dimensions. First, it is shown how the integration of ontological constraints on the domain and range of relation-types enables latent variable models to exploit latent embeddings of reduced complexity for modeling large knowledge graphs. The integration of this prior knowledge into the models leads to a substantial increase both in predictive performance and scalability with improvements of up to 77% in link-prediction tasks. Since manually designed domain and range constraints can be absent or fuzzy, we also propose and study an alternative approach based on a local closed-world assumption, which derives domain and range constraints from observed data without the need of prior knowledge extracted from the curated schema of the knowledge graph. We show that such an approach also leads to similar significant improvements in modeling quality. Further, we demonstrate that these two types of domain and range constraints are of general value to latent variable models by integrating and evaluating them on the current state of the art of latent variable models represented by RESCAL, Translational Embedding, and the neural network approach used by the recently proposed Google Knowledge Vault system. In the second part of the thesis it is shown that the just mentioned three approaches all perform well, but do not share many commonalities in the way they model knowledge graphs. These differences can be exploited in ensemble solutions which improve the predictive performance even further. The third part of the thesis concerns the efficient querying of the statistically modeled knowledge graphs. This thesis interprets statistically modeled knowledge graphs as probabilistic databases, where the latent variable models define a probability distribution for triples. From this perspective, link-prediction is equivalent to querying ground triples which is a standard functionality of the latent variable models. For more complex querying that involves e.g. joins and projections, the theory on probabilistic databases provides evaluation rules. In this thesis it is shown how the intrinsic features of latent variable models can be combined with the theory of probabilistic databases to realize efficient probabilistic querying of the modeled graphs

    Active Object Localization in Visual Situations

    Get PDF
    We describe a method for performing active localization of objects in instances of visual situations. A visual situation is an abstract concept---e.g., "a boxing match", "a birthday party", "walking the dog", "waiting for a bus"---whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. Our system combines given and learned knowledge of the structure of a particular situation, and adapts that knowledge to a new situation instance as it actively searches for objects. More specifically, the system learns a set of probability distributions describing spatial and other relationships among relevant objects. The system uses those distributions to iteratively sample object proposals on a test image, but also continually uses information from those object proposals to adaptively modify the distributions based on what the system has detected. We test our approach's ability to efficiently localize objects, using a situation-specific image dataset created by our group. We compare the results with several baselines and variations on our method, and demonstrate the strong benefit of using situation knowledge and active context-driven localization. Finally, we contrast our method with several other approaches that use context as well as active search for object localization in images.Comment: 14 page

    Knowledge-based Query Expansion in Real-Time Microblog Search

    Full text link
    Since the length of microblog texts, such as tweets, is strictly limited to 140 characters, traditional Information Retrieval techniques suffer from the vocabulary mismatch problem severely and cannot yield good performance in the context of microblogosphere. To address this critical challenge, in this paper, we propose a new language modeling approach for microblog retrieval by inferring various types of context information. In particular, we expand the query using knowledge terms derived from Freebase so that the expanded one can better reflect users' search intent. Besides, in order to further satisfy users' real-time information need, we incorporate temporal evidences into the expansion method, which can boost recent tweets in the retrieval results with respect to a given topic. Experimental results on two official TREC Twitter corpora demonstrate the significant superiority of our approach over baseline methods.Comment: 9 pages, 9 figure
    • …
    corecore