431 research outputs found

    Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation

    Full text link
    Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.Comment: Accepted by the 34th AAAI Conference on Artificial Intelligence (AAAI 2020

    Neighborhood Matching Network for Entity Alignment

    Full text link
    Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.Comment: 11 pages, accepted by ACL 202

    MHNF: Multi-hop Heterogeneous Neighborhood information Fusion graph representation learning

    Full text link
    Attention mechanism enables the Graph Neural Networks(GNNs) to learn the attention weights between the target node and its one-hop neighbors, the performance is further improved. However, the most existing GNNs are oriented to homogeneous graphs and each layer can only aggregate the information of one-hop neighbors. Stacking multi-layer networks will introduce a lot of noise and easily lead to over smoothing. We propose a Multi-hop Heterogeneous Neighborhood information Fusion graph representation learning method (MHNF). Specifically, we first propose a hybrid metapath autonomous extraction model to efficiently extract multi-hop hybrid neighbors. Then, we propose a hop-level heterogeneous Information aggregation model, which selectively aggregates different-hop neighborhood information within the same hybrid metapath. Finally, a hierarchical semantic attention fusion model (HSAF) is proposed, which can efficiently integrate different-hop and different-path neighborhood information respectively. This paper can solve the problem of aggregating the multi-hop neighborhood information and can learn hybrid metapaths for target task, reducing the limitation of manually specifying metapaths. In addition, HSAF can extract the internal node information of the metapaths and better integrate the semantic information of different levels. Experimental results on real datasets show that MHNF is superior to state-of-the-art methods in node classification and clustering tasks (10.94% - 69.09% and 11.58% - 394.93% relative improvement on average, respectively)

    Graph Neural Networks for Natural Language Processing: A Survey

    Full text link
    Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.Comment: 127 page
    • …
    corecore