6,052 research outputs found

    Analysis of Neural Networks in Terms of Domain Functions

    Get PDF
    Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a mysterious "black box". Although much research has already been done to "open the box," there is a notable hiatus in known publications on analysis of neural networks. So far, mainly sensitivity analysis and rule extraction methods have been used to analyze neural networks. However, these can only be applied in a limited subset of the problem domains where neural network solutions are encountered. In this paper we propose a wider applicable method which, for a given problem domain, involves identifying basic functions with which users in that domain are already familiar, and describing trained neural networks, or parts thereof, in terms of those basic functions. This will provide a comprehensible description of the neural network's function and, depending on the chosen base functions, it may also provide an insight into the neural network' s inner "reasoning." It could further be used to optimize neural network systems. An analysis in terms of base functions may even make clear how to (re)construct a superior system using those base functions, thus using the neural network as a construction advisor

    The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence

    Get PDF
    Intelligent systems based on first-order logic on the one hand, and on artificial neural networks (also called connectionist systems) on the other, differ substantially. It would be very desirable to combine the robust neural networking machinery with symbolic knowledge representation and reasoning paradigms like logic programming in such a way that the strengths of either paradigm will be retained. Current state-of-the-art research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to be overcome we perceive the question how symbolic knowledge can be encoded by means of connectionist systems: Satisfactory answers to this will naturally lead the way to knowledge extraction algorithms and to integrated neural-symbolic systems.Comment: In Proceedings of INFORMATION'2004, Tokyo, Japan, to appear. 12 page

    Bibliometric Mapping of the Computational Intelligence Field

    Get PDF
    In this paper, a bibliometric study of the computational intelligence field is presented. Bibliometric maps showing the associations between the main concepts in the field are provided for the periods 1996–2000 and 2001–2005. Both the current structure of the field and the evolution of the field over the last decade are analyzed. In addition, a number of emerging areas in the field are identified. It turns out that computational intelligence can best be seen as a field that is structured around four important types of problems, namely control problems, classification problems, regression problems, and optimization problems. Within the computational intelligence field, the neural networks and fuzzy systems subfields are fairly intertwined, whereas the evolutionary computation subfield has a relatively independent position.neural networks;bibliometric mapping;fuzzy systems;bibliometrics;computational intelligence;evolutionary computation

    Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Get PDF
    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model
    corecore