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Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily
dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue
properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational
foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While
the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness
predictions for implementation into the computational model.

1. Introduction

Computational models of diarthrodial joint function depend
on accurate reproduction of bony and soft tissue character-
istics. Certain characteristics may be readily acquired from
imaging modalities while others require experimentation.
This is particularly challenging when developing patient-
specific models for which soft tissue material properties, for
example, cannot be easily obtained. In such cases, existing
literature is referenced and best estimates serve as input into
the computer model. Further complicating model inputs are
soft tissue properties that have not or cannot be determined
experimentally and for which the properties of known tissues
with similar functions are applied. In either situation, data
from the literature usually includes a wide range of values
or large standard deviations, impacting the efficacy of the
model. Because such tissue inputs directly affect the function

of the computational model, the model’s predictive capability
is only as successful as the information provided to the
model. Thus by improving the accuracy of the inputs, the
performance of the model will be improved. In the current
work, a means of optimizing a model’s inputs, specifically
ligament stiffness, was sought for the greater purpose of
enhancing the predictive ability of the computational model.

To optimize the ligament stiffness, artificial neural net-
works (ANNs) were considered. ANNs are mathematical
models in which interconnected computational units or
neurons [1, 2] are utilized to “learn” relationships among
data [2, 3]. To learn this relationship, ANNs attempt to
minimize a given cost function by using an iterative process,
that is, learning rule [3, 4], to continually adjust system
weights until a target is achieved [1]. Once it learns the
relationship between known input-output data, the ANN can
then apply this knowledge to similar, never-before-seen data
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to predict an output [1, 3]. Therefore, ANNs are capable of
generalizing,meaning they are able to determine a reasonable
output based on learned knowledge [1, 5]. Also, they can
be utilized without knowing much about the input-output
relationship a priori [1], an advantage over statistical regres-
sion in which a mathematical formulation for the problem is
known or assumed to be known [1, 5]. Additionally, ANNs
are applicable to nonlinear problems [1]. Generally, neural
networks are useful in several applications including pattern
and image recognition, classification, and curve-fitting, and
various examples of these applications can be found within
the biomedical field, including musculoskeletal modelling
[1, 3–12].

Different types of ANNs exist and determination of
which type to use is usually dependent on a given project’s
application [5]. Because the current work falls under function
approximation, the following descriptions will focus on feed-
forward (FFN) and radial basis function (RBFN) networks
(Figure 1). Structurally, the basic unit of any ANN is the
neuron or node. In the case of a FFN, each input is first
multiplied by a weight factor, and then all weighted inputs
are summed together along with a bias prior to passing
through the activation function.The activation function, also
referred to as a transfer function, can take various forms
(e.g., linear, piece-wise, or sigmoidal [1, 6, 13]), but in each
case its purpose is to limit the output of a given neuron
within a certain range [1]. As for RBF networks, source inputs
are not weighted; rather, these inputs are passed through a
distance function essentially calculating how far the vector
formed by the input data is from a predetermined vector of
the same dimensionality, known as a “center.” The result of
this calculation is passed through a radial basis function, such
as a Gaussian function, and the produced value is the output
of the neuron [1, 14].

To form a network, several of these neurons may be
arranged together within layers thus defining the network’s
architecture, where the nodes of each layer feed their output
to those of the next layer. A neural network has (a) an
input layer of nodes that are fed with the inputs from the
environment, (b) an output layer, whose nodes output the
processing result of a given input to the environment, and (c)
one ormore layers arranged between the input and the output
layers, which do not interact directly with the environment.
One such architecture is known as a multilayer feedforward
network, which includes at least one hidden layerwith hidden
neurons inserted between inputs and an output layer [1]. An
RBFN is an example of amultilayer feedforward network as it
contains precisely one hidden layer [5]. A hidden layer, with
hidden neurons named as such due to their location, is any
layer that does not directly contribute to the final output of the
network, and so it can be viewed as an intermediate layer.The
purpose of these hidden layers is to add an additional means
of feature extraction so as to aid the network in deciphering
more complex input-output relationships, perhaps one of
nonlinear nature [1, 5].The final relationship between known
input-output data is dictated by the specific architecture
(number of hidden layers and their respective sizes and type
of nodes) of the network, as well as the node parameters

determined from learning (e.g., node weights and biases for
FFNs and centers and widths of RBFs for RBFNs) [5].

Given their advantages and applications within the
biomedical arena, and the means by which they function,
ANNs were considered an appropriate and noninvasive
means to further study the foot/ankle complex. Specifically,
two types of artificial neural networks, feedforward and
radial basis function networks, were used to predict ligament
stiffness for a computational foot/ankle model in order to
improve the computer model’s predictive capability.

2. Methods

Computationalmodels of Adult Acquired Flatfoot Deformity
(AAFD), created in SolidWorks 2007 (SolidWorks Corp.,
Concord, MA), were generated during previous work [15],
and subsequently, one of thesemodels was used in the current
research. AAFD is a degenerative foot condition that results
in joint misalignment and subsequent pain and discomfort
for the patient.The condition’s development follows posterior
tibial tendon dysfunction with several ligaments implicated
in the disease including the spring and deltoid ligaments,
plantar tissues, and the talocalcaneal interosseous ligaments
[16].

The models developed by Spratley et al. [15] were driven
by patient-specific anatomy obtained from magnetic reso-
nance imaging (MRI), muscle contractions represented as a
percent of body weight, and ligament stiffness included as
spring elements. For those ligaments implicated in AAFD,
graded stiffness values were assigned per clinician evaluation.
Following load application, represented as single-leg stance,
the model kinematics (relative bony angles and distances
[15, 17, 18]) were appropriately representative of function, but
further improvement was sought.

Because the computer model’s inputs dictate its function,
model performance would be improved with support for
input magnitude. This study focused on enhancing ligament
stiffness assignment via application of an ANN to establish
the relationship between stiffness and foot/ankle kinematics.
Just as other musculoskeletal studies utilized data from
computationalmodels for their input-output training data [8,
9], here, a single patient-specific model was used to generate
input-output pairings, and then network architecture was
determined. First, the model’s original ligament stiffness val-
ues were varied up or down by a given percentage under the
originally prescribed loading (i.e., single-leg stance loading)
and the resulting kinematics recorded. BecauseANNs require
large amounts of data [5], additional input-output pairs
were created from the computer model itself such that the
networks could learn from a wide range of training scenarios
how ligament stiffness could influence kinematic parameters.
Furthermore, since the inputs to each foot/ankle model
developed in the previous work [15] were patient-specific,
the generated training data could originate only from that
single patient’s model which was to be optimized. Therefore,
variations were carried out in 5% increments and these
adjustments were applied to one or more of three ligament
groupings. The three groupings consisted of those ligaments
implicated in AAFD and each group was separated from
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Figure 1: General structure for feedforward (FFN) and radial basis function (RBFN) networks. Sigmoidal and Gaussian transfer functions
appear in the hidden layers’ neurons for the FFN and RBFN, respectively. (𝑥 = input;𝑤𝑖𝑛 = 𝑛th weight in layer 𝑖; 𝑦 = output; ℎ𝑚 = 𝑚th hidden
neuron) (adapted from [1, 13]).

one another generally by ligament location (i.e., all medial
ligaments comprised one grouping). Also, additional input-
output pairs were created by varying stiffness from what
would be considered normal values for the given ligaments.
In total, approximately 160 data pairs were created to use
for ANN training. It is important to note here that while
the computer model’s inputs were ligament stiffness and
its outputs comprised kinematic measures, the input-output
definition for the ANNs was reversed. Therefore, the ANNs
were trained on known kinematic-stiffness pairings with the

goal of predicting ligament stiffness values for assessment of
network performance.

Because the task of predicting ligament stiffness is
considered a curve-fitting problem, both feedforward and
radial basis function networks were explored in the current
work. UsingMATLAB R2015a (TheMathWorks, Inc., Natick,
MA), multiple FFNs with a single hidden layer, two inputs
(i.e., kinematic angles), and fourteen outputs (i.e., ligament
stiffness elements) were created, each with varying hidden
layer sizes and weight initializations. Hidden and output
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Figure 2: Training process, feedforward network.The flowchart depicts the nested for loop structure of feedforward network training, which
ultimately chooses the optimal network of those tested based upon minimummean square error (MSE). Along with this minimum error, the
number of hidden neurons and seed value corresponding to the minimum error is output.

layer neurons included tan-sigmoid (steepness parameter
of 1) and linear transfer functions, respectively. Beginning
with a single hidden neuron, the size of the hidden layer
was incrementally increased by one to a maximum of ten
hidden neurons in order to determine the ideal network size
(Figure 2). Determination of the optimal number of hidden
neurons and the seed value of the random number generator
(rng), the latter of which guaranteed reproducibility of
results and effectively established optimal weights for the
FFN, was accomplished using a series of nested “for” loops.
Furthermore, 10-fold cross-validation was implemented to
facilitate network selection. Generally, cross-validation is a
methodology in which the known dataset is first divided into
a given number of folds (in this case 10). A single fold is
left out as test data, while the remaining folds of data are
pooled together to train the network. Following training, the
network is tested with the previously left out fold and the
ANN’s performance is assessed. Then, the data fold is placed
back into the training subset while a second fold is left out
as test data. This process is repeated until each of the folds
is left out once as test data; finally, the overall performance
of the network is determined by averaging all folds’ test
performances.

For every layer size of the FFNs created here, cross-
validation was adapted to generate training, validation, and
test subsets, while performance was evaluated using mean
square error (MSE). MSE was calculated as shown in (1) in
which 𝑁 is the number of input-output pairs, 𝑡 is the target
value (stiffness), and 𝑎 is the network prediction [13]. Per (1),
MSE isminimized as network predictionsmove toward target
values; therefore, MSE values closer to 0 represent better-
performing networks. (Note: because MSE sums the squared
differences between targets and predictions, error values may
favor larger elements over smaller elements in dataset that
include varying scales for inputs and/or outputs. As a result,
input-output data may be standardized to minimize such
effect. In this study, inputs and outputs were standardized
within a range of [−1, 1] prior to the calculation of MSE.)

MSE = 1
𝑁

𝑁

∑
𝑖=1

(𝑡𝑖 − 𝑎𝑖)
2 . (1)

Average MSE on the validation subset was determined for
each combination of hidden neuron number and seed value,
and the network corresponding to the smallest of these
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Figure 3: Training process, radial basis function network. Similar to the feedforward network, the radial basis function network also includes a
nested for loop structure. Here, an optimal network is chosen based onminimummean square error of each 𝑘, 𝜎, and seed value combination.

average performances was selected as the optimal network.
Following its selection, MSE of the test data was calculated.

To implement the RBFN (Figure 3), training data, center
values, and shape parameters were input into a code utilizing
a proprietary RBFN function file, developed by Kecman,
Ph.D. [19], so as to determine the optimal network. Generally,
a cross-validation procedure similar to that just described
facilitated data division and network selection. In addition
to seed value (which, again, guaranteed reproducibility, and
randomly shuffled the known input-output pairs), the opti-
mal number of centers (effectively determining the number of
neurons) and shape parameter were selected using embedded
“for” loops. Just as with the FFNs, MSE was calculated for
each subset of data, and the network corresponding to the
smallest average MSE on the validation set was selected as
the optimal RBFN. Subsequently, the corresponding center
and shape parameters were identified and error on the test
set was calculated.

Once defined, the optimal FFNandRBFN structureswere
each used to predict stiffness values for the computational
model (ground truth). For each of the fourteen outputs, the
network-predicted stiffness was compared to the originally
assigned stiffness values by computing a percent difference
relative to the latter of the two values.

Table 1: Optimal network parameters.

Parameters
ℎ 𝑘 𝜎

FFN 9 — —
RBFN 15 11 0.5
Network parameters for optimal feedforward and radial basis function
networks. ℎ = hidden neurons; 𝑘 = number of centers; 𝜎 = shape parameter.

3. Results

Following trainingwith known kinematic (talo-1stmetatarsal
and talonavicular angles) stiffness (fourteen components)
pairings, optimal FFN and RBFN were chosen, their param-
eters noted (Table 1), and their performances compared
(Table 2). Again, the optimal network was defined as that
network which resulted in the smallest MSE among all the
networks trained. The optimal FFN was found to have a
smaller number of neurons in its hidden layer as compared to
the RBFN. For the latter, 𝑘 represented the number of centers
in the network. In other words, every 𝑘th value in the dataset
served as a center and thus indicated how many neurons the
resulting network had.
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Table 2: Performance of optimized networks.

MSE 𝑅
Validation Test

FFN 0.032 0.086 0.986
RBFN 0.053 0.054 0.980
Performance for optimized feedforward (FFN) and radial basis function
(RBFN) networks as assessed by mean square error (MSE) and correlation
(𝑅); both compared network-predicted stiffness to target values. MSE was
calculated on the validation and test subsets, while 𝑅 was calculated for
the entire dataset (𝑁 = 163). (Note: MSE was calculated using standardized
input-output data, which fell within the range of [−1, 1].)

Table 3: Percent differences, ANN-predictions versus target stiff-
ness.

Ligament Target stiffness
(N/mm)

Percent difference
FFN RBFN

Tibiocalcaneal 75.0 0.89% 6.22%
Tibionavicular 5.0 −5.79% 19.44%
Tibiospring 1 7.6 −5.79% 19.44%
Tibiospring 2 25.0 −5.79% 19.44%
Anterior tibiotalar 90.0 2.98% 2.00%
Posterior tibiotalar 117.0 2.98% 2.00%
Talocalcaneal
interosseous 33.8 6.32% 6.58%

Plantar fascia 1 30.0 6.14% 3.61%
Plantar fascia 2 45.0 6.14% 3.61%
Plantar fascia 3 37.5 6.14% 3.61%
Plantar fascia 4 15.0 6.14% 3.61%
Plantar fascia 5 150.0 6.10% 2.72%
Spring 1 16.9 3.22% 8.73%
Spring 2 2.3 3.39% 29.90%
Ligament stiffness values for the patient-specific foot/ankle model alongside
percent differences between target values and the ANN-predicted stiffness.
(Negative percentages indicate a decrease relative to the target stiffness
value.) Within the foot/ankle model, multiple linear elements comprise a
single ligament; therefore, the components listed in the table represent each
uniquely assigned stiffness value.

Regarding performance error, the FFN had a lower
performance (i.e., smaller mean square error) than the RBFN
when MSE on the validation sets were compared, while the
reverse was true for the test sets. Correlation values, 𝑅, were
similar between the two ANNs.

Following performance comparisons, the optimized net-
works were used to predict stiffness values for all fourteen
ligament components (Table 3). A percent difference was
calculated relative to target ligament stiffness (i.e., ground
truth) with the FFN and RBFN resulting in maximum
absolute differences of about 6% and 29%, respectively.

4. Discussion

Predicting the relationship between kinematic behavior of a
computational foot/ankle model and soft tissue (ligament)
characteristics was accomplished with an artificial neural

network. ANNs were chosen for the current work for several
reasons. First, the contribution of each ligament alone or in
combination with others to a particular kinematic measure
was not readily apparent and thus deemed ANNs a desirable
approach for honing in on specific stiffness values. Further,
theoretically, it has been shown that a multilayer ANN with
a single hidden layer can be employed to model any function
[2, 5], and so this knowledge also attributed to the selection
of ANNs for the current study. Finally, ANNs were pursued
as a viable optimization means as various others have applied
them to the biomedical field [3–12].

In the musculoskeletal area, ANNs have been used to
determine cartilage stress within a computationallymodelled
knee [8], as well as contact between a computationally
modelled femoral component and tibial plateau of a knee
implant [9]. In the former example, reaction forces due to
cartilage contact simulated in a multibody model served
as the inputs and von Mises stresses from a finite element
(FE) model served as the outputs during network training.
Ultimately, the investigators were able to successfully predict
cartilage stress from the neural networks developed [8] as
the predictions were similar to their ground truth model.
In the latter example, Eskinazi and Fregly [9] utilized an
ANN approach to develop a computationally faster and
more accurate model to predict contact. Using translations
and rotations as inputs and contact forces and torques
as outputs observed between the modelled components, a
series of ANNs were successfully trained. Subsequently, the
ANNs proved to have more accurate contact predictions and
managed to output the predictions faster than the investiga-
tors’ existing surrogate contact model [9]. A third example
describes classification of fracture healing in which Kaufman
et al. represented both intact and fractured bone with a
vibrating, cylindrical beam. The equations describing the
behavior of this beamwere translated into an electrical model
in which admittance values stood for the beam’s vibrational
characteristics. Subsequently, an ANN was trained on these
admittance values (inputs) and classifications representing
one of four levels of a healed fracture (outputs). Good ANN
performance was observed and the researchers planned to
expand the ANN application to human and animal models
[10]. Because the preceding examples usedANNs successfully
to complement biomechanical studies, their use for stiffness
optimization was considered applicable to the current work
and implemented in a preliminary study [20].

In the case of the networks trained here, the validation set
performance of the FFN was better in comparison to that of
the RBFN. Strictly from a comparison standpoint, if a single
network was to be chosen between the two types, the FFN
would be favored due to its slightly lower MSE value on the
validation set despite the fact that its test set performance
was higher than that of the RBFN. Generally, however, as
the two networks’ mean square errors were similar, it may be
that either of the networks would provide reasonable stiffness
predictions for the particular model used in this study.

To further investigate our optimal networks’ perfor-
mances, correlation was observed on the entire dataset (𝑁 =
163) (Table 2); good correlations were found between targets
and predictions for both networks.
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In addition, the optimal networks were used to predict
stiffness for specific targets, and the comparison between
the two was illustrated with percent differences (Table 3).
The rationale for observing this data was that a network
trained well on a dataset generated from the ground truth;
computational model should be able to closely predict the
target stiffness values when presentedwith the corresponding
kinematics. This rationale was validated, particularly in the
case of the feedforward network which predicted all of the
target ligament stiffness data within 6% of the expected
values. Most of the stiffness values were also predicted well
by the RBFN with ten of the fourteen types of stiffness
varying no more than 8.7% from the target values. Of the
remaining four values, three varied by approximately 19.4%
while one fell just under 30% from the expected stiffness.
Interestingly, these percent differences did not necessarily
equate to large absolute changes in stiffness. For example, the
30%difference of this fourth value (a component of the spring
ligament) represented only a 0.6N/mm difference from the
originally assigned value. While this study alone cannot
make definitive conclusions regarding the role a particular
ligament has on specific foot kinematics, it could indicate
upon which ligaments to focus further attention. Higher
percent differences may indicate the necessity to generate
more input-outputs for network training such that the ANN
can better learn the characteristics of the foot/ankle system.

Generally, ANNs require extensive training data [5];
however, the extent may be defined differently depending
on the application as no definitive value is specified. Here,
during the generation of training data, stiffness variations
were adjusted in fixed increments and in combinations
(e.g., varying two ligament groupings while one remained
constant) to provide a wide stiffness representation to the
neural networks. Future investigations could further expand
upon the current work by adjusting stiffness in smaller fixed
increments and/or additional combinations to increase the
number of training data pairs employed by the networks.
This could potentially drive down the error observed during
training and by extension the amount of variation observed
in stiffness predictions.

Finally, an interesting note relevant to network size may
be made. As depicted in Table 1, the FFN resulted in fewer
neurons during training. This, in part, is due to the fact that
only a maximum of ten hidden neurons was tested with
the FFN whereas a significantly larger number of neurons
were possible in the case of the RBFN. For the FFN, it
was thought that a larger network size, thus more network
complexity, would be unreasonable given the number of
known input-output pairings. Because the number of centers
dictated the placement of neurons in the RBFN, a smaller
number of centers could result in larger numbers of neurons.
Furthermore, as Beale et al. explain, radial basis function
networks survey more localized areas of the input space
(hence the need for shape parameters which determine the
width of the Gaussian transfer functions that are placed at
each center) in comparison to feedforward networks, which
use sigmoidal transfer functions [13]. Thus, the phenomenon
of more hidden neurons in a RBFN than FFN, as was
observed here, is likely not uncommon (though the reverse
is not impossible [13]).

5. Conclusion

While the FFN’s performance was better than that of the
RBFN, both networks demonstrated acceptable performance
when faced with the task of predicting ligament stiffness for a
computational foot/ankle model. Future work could involve
the development of additional training data pairs in order
to further optimize predictions; however, the study shows
promise for the application of predicting soft tissue properties
using artificial neural networks for the foot/ankle model and
advocates use of similar methodology during the examina-
tion and creation of other computational models. With the
ability to predict improved inputs for computational joint
models, biomechanical knowledge of human joint function
may advance further.
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