11,269 research outputs found

    Analysis and Detection of Information Types of Open Source Software Issue Discussions

    Full text link
    Most modern Issue Tracking Systems (ITSs) for open source software (OSS) projects allow users to add comments to issues. Over time, these comments accumulate into discussion threads embedded with rich information about the software project, which can potentially satisfy the diverse needs of OSS stakeholders. However, discovering and retrieving relevant information from the discussion threads is a challenging task, especially when the discussions are lengthy and the number of issues in ITSs are vast. In this paper, we address this challenge by identifying the information types presented in OSS issue discussions. Through qualitative content analysis of 15 complex issue threads across three projects hosted on GitHub, we uncovered 16 information types and created a labeled corpus containing 4656 sentences. Our investigation of supervised, automated classification techniques indicated that, when prior knowledge about the issue is available, Random Forest can effectively detect most sentence types using conversational features such as the sentence length and its position. When classifying sentences from new issues, Logistic Regression can yield satisfactory performance using textual features for certain information types, while falling short on others. Our work represents a nontrivial first step towards tools and techniques for identifying and obtaining the rich information recorded in the ITSs to support various software engineering activities and to satisfy the diverse needs of OSS stakeholders.Comment: 41st ACM/IEEE International Conference on Software Engineering (ICSE2019

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Paraiso : An Automated Tuning Framework for Explicit Solvers of Partial Differential Equations

    Full text link
    We propose Paraiso, a domain specific language embedded in functional programming language Haskell, for automated tuning of explicit solvers of partial differential equations (PDEs) on GPUs as well as multicore CPUs. In Paraiso, one can describe PDE solving algorithms succinctly using tensor equations notation. Hydrodynamic properties, interpolation methods and other building blocks are described in abstract, modular, re-usable and combinable forms, which lets us generate versatile solvers from little set of Paraiso source codes. We demonstrate Paraiso by implementing a compressive hydrodynamics solver. A single source code less than 500 lines can be used to generate solvers of arbitrary dimensions, for both multicore CPUs and GPUs. We demonstrate both manual annotation based tuning and evolutionary computing based automated tuning of the program.Comment: 52 pages, 14 figures, accepted for publications in Computational Science and Discover
    • …
    corecore