11,331 research outputs found

    End-to-End Knowledge-Routed Relational Dialogue System for Automatic Diagnosis

    Full text link
    Beyond current conversational chatbots or task-oriented dialogue systems that have attracted increasing attention, we move forward to develop a dialogue system for automatic medical diagnosis that converses with patients to collect additional symptoms beyond their self-reports and automatically makes a diagnosis. Besides the challenges for conversational dialogue systems (e.g. topic transition coherency and question understanding), automatic medical diagnosis further poses more critical requirements for the dialogue rationality in the context of medical knowledge and symptom-disease relations. Existing dialogue systems (Madotto, Wu, and Fung 2018; Wei et al. 2018; Li et al. 2017) mostly rely on data-driven learning and cannot be able to encode extra expert knowledge graph. In this work, we propose an End-to-End Knowledge-routed Relational Dialogue System (KR-DS) that seamlessly incorporates rich medical knowledge graph into the topic transition in dialogue management, and makes it cooperative with natural language understanding and natural language generation. A novel Knowledge-routed Deep Q-network (KR-DQN) is introduced to manage topic transitions, which integrates a relational refinement branch for encoding relations among different symptoms and symptom-disease pairs, and a knowledge-routed graph branch for topic decision-making. Extensive experiments on a public medical dialogue dataset show our KR-DS significantly beats state-of-the-art methods (by more than 8% in diagnosis accuracy). We further show the superiority of our KR-DS on a newly collected medical dialogue system dataset, which is more challenging retaining original self-reports and conversational data between patients and doctors.Comment: 8 pages, 5 figues, AAA

    A Controllable Model of Grounded Response Generation

    Full text link
    Current end-to-end neural conversation models inherently lack the flexibility to impose semantic control in the response generation process, often resulting in uninteresting responses. Attempts to boost informativeness alone come at the expense of factual accuracy, as attested by pretrained language models' propensity to "hallucinate" facts. While this may be mitigated by access to background knowledge, there is scant guarantee of relevance and informativeness in generated responses. We propose a framework that we call controllable grounded response generation (CGRG), in which lexical control phrases are either provided by a user or automatically extracted by a control phrase predictor from dialogue context and grounding knowledge. Quantitative and qualitative results show that, using this framework, a transformer based model with a novel inductive attention mechanism, trained on a conversation-like Reddit dataset, outperforms strong generation baselines.Comment: AAAI 202

    Copy mechanism and tailored training for character-based data-to-text generation

    Full text link
    In the last few years, many different methods have been focusing on using deep recurrent neural networks for natural language generation. The most widely used sequence-to-sequence neural methods are word-based: as such, they need a pre-processing step called delexicalization (conversely, relexicalization) to deal with uncommon or unknown words. These forms of processing, however, give rise to models that depend on the vocabulary used and are not completely neural. In this work, we present an end-to-end sequence-to-sequence model with attention mechanism which reads and generates at a character level, no longer requiring delexicalization, tokenization, nor even lowercasing. Moreover, since characters constitute the common "building blocks" of every text, it also allows a more general approach to text generation, enabling the possibility to exploit transfer learning for training. These skills are obtained thanks to two major features: (i) the possibility to alternate between the standard generation mechanism and a copy one, which allows to directly copy input facts to produce outputs, and (ii) the use of an original training pipeline that further improves the quality of the generated texts. We also introduce a new dataset called E2E+, designed to highlight the copying capabilities of character-based models, that is a modified version of the well-known E2E dataset used in the E2E Challenge. We tested our model according to five broadly accepted metrics (including the widely used BLEU), showing that it yields competitive performance with respect to both character-based and word-based approaches.Comment: ECML-PKDD 2019 (Camera ready version

    Incorporating Structured Commonsense Knowledge in Story Completion

    Full text link
    The ability to select an appropriate story ending is the first step towards perfect narrative comprehension. Story ending prediction requires not only the explicit clues within the context, but also the implicit knowledge (such as commonsense) to construct a reasonable and consistent story. However, most previous approaches do not explicitly use background commonsense knowledge. We present a neural story ending selection model that integrates three types of information: narrative sequence, sentiment evolution and commonsense knowledge. Experiments show that our model outperforms state-of-the-art approaches on a public dataset, ROCStory Cloze Task , and the performance gain from adding the additional commonsense knowledge is significant
    • …
    corecore