4,627 research outputs found

    The Complexity of Knapsack in Graph Groups

    Get PDF
    Myasnikov et al. have introduced the knapsack problem for arbitrary finitely generated groups. In LohreyZ16 the authors proved that for each graph group, the knapsack problem can be solved in NP. Here, we determine the exact complexity of the problem for every graph group. While the problem is TC^0-complete for complete graphs, it is LogCFL-complete for each (non-complete) transitive forest. For every remaining graph, the problem is NP-complete

    Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

    Get PDF
    It is shown that the knapsack problem, which was introduced by Myasnikov et al. for arbitrary finitely generated groups, can be solved in NP for graph groups. This result even holds if the group elements are represented in a compressed form by SLPs, which generalizes the classical NP-completeness result of the integer knapsack problem. We also prove general transfer results: NP-membership of the knapsack problem is passed on to finite extensions, HNN-extensions over finite associated subgroups, and amalgamated products with finite identified subgroups

    Exponent equations in HNN-extensions

    Full text link
    We consider exponent equations in finitely generated groups. These are equations, where the variables appear as exponents of group elements and take values from the natural numbers. Solvability of such (systems of) equations has been intensively studied for various classes of groups in recent years. In many cases, it turns out that the set of all solutions on an exponent equation is a semilinear set that can be constructed effectively. Such groups are called knapsack semilinear. Examples of knapsack semilinear groups are hyperbolic groups, virtually special groups, co-context-free groups and free solvable groups. Moreover, knapsack semilinearity is preserved by many group theoretic constructions, e.g., finite extensions, graph products, wreath products, amalgamated free products with finite amalgamated subgroups, and HNN-extensions with finite associated subgroups. On the other hand, arbitrary HNN-extensions do not preserve knapsack semilinearity. In this paper, we consider the knapsack semilinearity of HNN-extensions, where the stable letter tt acts trivially by conjugation on the associated subgroup AA of the base group GG. We show that under some additional technical conditions, knapsack semilinearity transfers from base group GG to the HNN-extension HH. These additional technical conditions are satisfied in many cases, e.g., when AA is a centralizer in GG or AA is a quasiconvex subgroup of the hyperbolic group GG.Comment: A short version appeared in Proceedings of ISSAC 202

    Knapsack problems in products of groups

    Full text link
    The classic knapsack and related problems have natural generalizations to arbitrary (non-commutative) groups, collectively called knapsack-type problems in groups. We study the effect of free and direct products on their time complexity. We show that free products in certain sense preserve time complexity of knapsack-type problems, while direct products may amplify it. Our methods allow to obtain complexity results for rational subset membership problem in amalgamated free products over finite subgroups.Comment: 15 pages, 5 figures. Updated to include more general results, mostly in Section

    Knapsack Problems in Groups

    Full text link
    We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure

    Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack

    Get PDF
    The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., (1+epsilon)-approximations in f(k,epsilon)n^O(1) time where k is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability: - In the maximum independent set of rectangles problem (MISR) we are given a collection of n axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [Marx, ESA\u2705]. The best-known polynomial-time approximation factor is O(log log n) [Chalermsook and Chuzhoy, SODA\u2709] and it admits a QPTAS [Adamaszek and Wiese, FOCS\u2713; Chuzhoy and Ene, FOCS\u2716]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant epsilon>0 and integer k>0, in time f(k,epsilon)n^g(epsilon), either outputs a solution of size at least k/(1+epsilon), or declares that the optimum solution has size less than k. - In the (2-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is 2+epsilon [Jansen and Zhang, SODA\u2704]. These problems admit a QPTAS for polynomially bounded item sizes [Adamaszek and Wiese, SODA\u2715]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR. For all considered problems, getting time f(k,epsilon)n^O(1), rather than f(k,epsilon)n^g(epsilon), would give FPT time f\u27(k)n^O(1) exact algorithms by setting epsilon=1/(k+1), contradicting W[1]-hardness. Instead, for each fixed epsilon>0, our PASs give (1+epsilon)-approximate solutions in FPT time. For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take n^g(epsilon) time and return a subset of at most k^g(epsilon) rectangles/items that contains a solution of size at least k/(1+epsilon) if a solution of size k exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [Lokshtanov et al., STOC\u2717]

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model
    • …
    corecore