2,769 research outputs found

    Development of a 6 DOF Parallel Serial Hybrid Manipulator

    Get PDF
    This thesis focuses on the development of a new modular 6 DOF hybrid manipulator. A hybrid manipulator consists of the synergistic combination of serial and parallel manipulator architectures. It incorporates the good performance characteristics of a serial manipulator (larger work space and dexterity) and a parallel manipulator (higher rigidity and loading capacity/self-weight ratio). The hybrid manipulator under study includes a 3 DOF symmetric planar manipulator as a base platform over which a 3 DOF serial manipulator was placed with an appropriate endeffector. The objective of the thesis was to fabricate the above-described manipulator and develop control algorithm for manipulation. The research work started with kinematic (forward and inverse) and dynamic analysis of parallel and serial manipulators was carried analytically and computationally in MATLAB. The results of which were required for configuration selection, design optimization, motion analysis and simulation of the hybrid manipulator. From the analysis results, the planar base and serial arm manipulator was fabricated. The prototype developed was controlled in real time through MATLAB-Sim Mechanics Arduino Interface. The inverse kinematics was solved by MATLAB and servo control was established via Arduino. The algorithm developed for manipulation was verified alongside computational simulation and experiment

    Pose, posture, formation and contortion in kinematic systems

    Get PDF
    The concepts of pose, posture, formation and contortion are defined for serial, parallel and hybrid kinematic systems. Workspace and jointspace structure is examined in terms of these concepts. The inter-relationships of pose, posture, formation and contortion are explored for a range of robot workspace and jointspace types

    A novel design for a hybrid space manipulator

    Get PDF
    Described are the structural design, kinematics, and characteristics of a robot manipulator for space applications and use as an articulate and powerful space shuttle manipulator. Hybrid manipulators are parallel-serial connection robots that give rise to a multitude of highly precise robot manipulators. These manipulators are modular and can be extended by additional modules over large distances. Every module has a hemispherical work space and collective modules give rise to highly dexterous symmetrical work space. Some basic designs and kinematic structures of these robot manipulators are discussed, the associated direct and inverse kinematics formulations are presented, and solutions to the inverse kinematic problem are obtained explicitly and elaborated upon. These robot manipulators are shown to have a strength-to-weight ratio that is many times larger than the value that is currently available with industrial or research manipulators. This is due to the fact that these hybrid manipulators are stress-compensated and have an ultralight weight, yet, they are extremely stiff due to the fact that force distribution in their structure is mostly axial. Actuation is prismatic and can be provided by ball screws for maximum precision

    Compliance Model of Exechon Manipulators with an Offset Wrist

    Get PDF
    The stiffness of the Exechon hybrid manipulator is a crucial performance indicator as the manipulator is used as a 5-axis machine tool. Normally, the serial module of the Exechon is not included in the kinematic and stiffness analysis. In terms of kinematics, the parallel and serial modules are said to be decoupled, i.e. parallel module can be solved for position and the serial module can be used to compensate the parasitic orientation of the parallel platform. This is only possible when the serial module is a perfect spherical wrist. However, several models of Exechon technology have an offset wrist rather than a spherical one. Such an offset makes it impossible to obtain a kinematic decoupling. In all publications available in the literature, the Exechon is considered to have a perfect spherical wrist. Therefore, this paper presents the inverse kinematics and compliance model of Exechon manipulators with offset wrists. The unknown coefficients in the compliance model are determined by optimizing the model against experimental data. The resulting predictions are then compared against more experimental results to validate the model

    Kinematic Analysis of a Serial - Parallel Machine Tool: the VERNE machine

    Get PDF
    The paper derives the inverse and the forward kinematic equations of a serial - parallel 5-axis machine tool: the VERNE machine. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. These legs are connected in a way that the combined effects of the three legs lead to an over-constrained mechanism with complex motion. This motion is defined as a simultaneous combination of rotation and translation. In this paper we propose symbolical methods that able to calculate all kinematic solutions and identify the acceptable one by adding analytical constraint on the disposition of legs of the parallel module

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods
    corecore