2 research outputs found

    Design and Development of Assistive Robots for Close Interaction with People with Disabilities

    Get PDF
    People with mobility and manipulation impairments wish to live and perform tasks as independently as possible; however, for many tasks, compensatory technology does not exist, to do so. Assistive robots have the potential to address this need. This work describes various aspects of the development of three novel assistive robots: the Personal Mobility and Manipulation Appliance (PerMMA), the Robotic Assisted Transfer Device (RATD), and the Mobility Enhancement Robotic Wheelchair (MEBot). PerMMA integrates mobility with advanced bi-manual manipulation to assist people with both upper and lower extremity impairments. The RATD is a wheelchair mounted robotic arm that can lift higher payloads and its primary aim is to assist caregivers of people who cannot independently transfer from their electric powered wheelchair to other surfaces such as a shower bench or toilet. MEBot is a wheeled robot that has highly reconfigurable kinematics, which allow it to negotiate challenging terrain, such as steep ramps, gravel, or stairs. A risk analysis was performed on all three robots which included a Fault Tree Analysis (FTA) and a Failure Mode Effect Analysis (FMEA) to identify potential risks and inform strategies to mitigate them. Identified risks or PerMMA include dropping sharp or hot objects. Critical risks identified for RATD included tip over, crush hazard, and getting stranded mid-transfer, and risks for MEBot include getting stranded on obstacles and tip over. Lastly, several critical factors, such as early involvement of people with disabilities, to guide future assistive robot design are presented
    corecore