850 research outputs found

    Medical Robotics for use in MRI Guided Endoscopy

    Get PDF
    Interventional Magnetic Resonance Imaging (MRI) is a developing field that aims to provide intra-operative MRI to a clinician to guide diagnostic or therapeutic medical procedures. MRI provides excellent soft tissue contrast at sub-millimetre resolution in both 2D and 3D without the need for ionizing radiation. Images can be acquired in near real-time for guidance purposes. Operating in the MR environment brings challenges due to the high static magnetic field, switching magnetic field gradients and RF excitation pulses. In addition high field closed bore scanners have spatial constraints that severely limit access to the patient. This thesis presents a system for MRI-guided Endoscopic Retrograde Cholangio-pancreatography (ERCP). This includes a remote actuation system that enables an MRI-compatible endoscope to be controlled whilst the patient is inside the MRI scanner, overcoming the spatial and procedural constraints imposed by the closed scanner bore. The modular system utilises non-magnetic ultrasonic motors and is designed for image-guided user-in-the-loop control. A novel miniature MRI compatible clutch has been incorporated into the design to reduce the need for multiple parallel motors. The actuation system is MRI compatible does not degrade the MR images below acceptable levels. User testing showed that the actuation system requires some degree of training but enables completion of a simulated ERCP procedure with no loss of performance. This was demonstrated using a tailored ERCP simulator and kinematic assessment tool, which was validated with users from a range of skill levels to ensure that it provides an objective measurement of endoscopic skill. Methods of tracking the endoscope in real-time using the MRI scanner are explored and presented here. Use of the MRI-guided ERCP system was shown to improve the operator’s ability to position the endoscope in an experimental environment compared with a standard fluoroscopic-guided system.Open Acces

    Medical robots for MRI guided diagnosis and therapy

    No full text
    Magnetic Resonance Imaging (MRI) provides the capability of imaging tissue with fine resolution and superior soft tissue contrast, when compared with conventional ultrasound and CT imaging, which makes it an important tool for clinicians to perform more accurate diagnosis and image guided therapy. Medical robotic devices combining the high resolution anatomical images with real-time navigation, are ideal for precise and repeatable interventions. Despite these advantages, the MR environment imposes constraints on mechatronic devices operating within it. This thesis presents a study on the design and development of robotic systems for particular MR interventions, in which the issue of testing the MR compatibility of mechatronic components, actuation control, kinematics and workspace analysis, and mechanical and electrical design of the robot have been investigated. Two types of robotic systems have therefore been developed and evaluated along the above aspects. (i) A device for MR guided transrectal prostate biopsy: The system was designed from components which are proven to be MR compatible, actuated by pneumatic motors and ultrasonic motors, and tracked by optical position sensors and ducial markers. Clinical trials have been performed with the device on three patients, and the results reported have demonstrated its capability to perform needle positioning under MR guidance, with a procedure time of around 40mins and with no compromised image quality, which achieved our system speci cations. (ii) Limb positioning devices to facilitate the magic angle effect for diagnosis of tendinous injuries: Two systems were designed particularly for lower and upper limb positioning, which are actuated and tracked by the similar methods as the first device. A group of volunteers were recruited to conduct tests to verify the functionality of the systems. The results demonstrate the clear enhancement of the image quality with an increase in signal intensity up to 24 times in the tendon tissue caused by the magic angle effect, showing the feasibility of the proposed devices to be applied in clinical diagnosis

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Design, Development, and Evaluation of a Teleoperated Master-Slave Surgical System for Breast Biopsy under Continuous MRI Guidance

    Get PDF
    The goal of this project is to design and develop a teleoperated master-slave surgical system that can potentially assist the physician in performing breast biopsy with a magnetic resonance imaging (MRI) compatible robotic system. MRI provides superior soft-tissue contrast compared to other imaging modalities such as computed tomography or ultrasound and is used for both diagnostic and therapeutic procedures. The strong magnetic field and the limited space inside the MRI bore, however, restrict direct means of breast biopsy while performing real-time imaging. Therefore, current breast biopsy procedures employ a blind targeting approach based on magnetic resonance (MR) images obtained a priori. Due to possible patient involuntary motion or inaccurate insertion through the registration grid, such approach could lead to tool tip positioning errors thereby affecting diagnostic accuracy and leading to a long and painful process, if repeated procedures are required. Hence, it is desired to develop the aforementioned teleoperation system to take advantages of real-time MR imaging and avoid multiple biopsy needle insertions, improving the procedure accuracy as well as reducing the sampling errors. The design, implementation, and evaluation of the teleoperation system is presented in this dissertation. A MRI-compatible slave robot is implemented, which consists of a 1 degree of freedom (DOF) needle driver, a 3-DOF parallel mechanism, and a 2-DOF X-Y stage. This slave robot is actuated with pneumatic cylinders through long transmission lines except the 1-DOF needle driver is actuated with a piezo motor. Pneumatic actuation through long transmission lines is then investigated using proportional pressure valves and controllers based on sliding mode control are presented. A dedicated master robot is also developed, and the kinematic map between the master and the slave robot is established. The two robots are integrated into a teleoperation system and a graphical user interface is developed to provide visual feedback to the physician. MRI experiment shows that the slave robot is MRI-compatible, and the ex vivo test shows over 85%success rate in targeting with the MRI-compatible robotic system. The success in performing in vivo animal experiments further confirm the potential of further developing the proposed robotic system for clinical applications

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment

    Modeling, Sensorization and Control of Concentric-Tube Robots

    Get PDF
    Since the concept of the Concentric-Tube Robot (CTR) was proposed in 2006, CTRs have been a popular research topic in the field of surgical robotics. The unique mechanical design of this robot allows it to navigate through narrow channels in the human anatomy and operate in highly constrained environments. It is therefore likely to become the next generation of surgical robots to overcome the challenges that cannot be addressed by current technologies. In CSTAR, we have had ongoing work over the past several years aimed at developing novel techniques and technologies for CTRs. This thesis describes the contributions made in this context, focusing primarily on topics such as modeling, sensorization, and control of CTRs. Prior to this work, one of the main challenges in CTRs was to develop a kinematic model that achieves a balance between the numerical accuracy and computational efficiency for surgical applications. In this thesis, a fast kinematic model of CTRs is proposed, which can be solved at a comparatively fast rate (0.2 ms) with minimal loss of accuracy (0.1 mm) for a 3-tube CTR. A Jacobian matrix is derived based on this model, leading to the development of a real-time trajectory tracking controller for CTRs. For tissue-robot interactions, a force-rejection controller is proposed for position control of CTRs under time-varying force disturbances. In contrast to rigid-link robots, instability of position control could be caused by non-unique solutions to the forward kinematics of CTRs. This phenomenon is modeled and analyzed, resulting in design criteria that can ensure kinematic stability of a CTR in its entire workspace. Force sensing is another major difficulty for CTRs. To address this issue, commercial force/torque sensors (Nano43, ATI Industrial Automation, United States) are integrated into one of our CTR prototypes. These force/torque sensors are replaced by Fiber-Bragg Grating (FBG) sensors that are helically-wrapped and embedded in CTRs. A strain-force calculation algorithm is proposed, to convert the reflected wavelength of FBGs into force measurements with 0.1 N force resolution at 100 Hz sampling rate. In addition, this thesis reports on our innovations in prototyping drive units for CTRs. Three designs of CTR prototypes are proposed, the latest one being significantly more compact and cost efficient in comparison with most designs in the literature. All of these contributions have brought this technology a few steps closer to being used in operating rooms. Some of the techniques and technologies mentioned above are not merely limited to CTRs, but are also suitable for problems arising in other types of surgical robots, for example, for sensorizing da Vinci surgical instruments for force sensing (see Appendix A)

    MRI-VisAct: a Bowden cable-driven MRI compatible series viscoelastic actuator

    Get PDF
    Presence of the strong magnetic fields in the Magnetic Resonance Imaging (MRI) environment limits the integration of robotic rehabilitation systems to the MRI process. The tendency to improve imaging quality by the amplification of magnetic field strength further tightens the bidirectional compatibility constraints on MRI compatible rehabilitation devices. We present the design, control, and characterization of MRI-VisAct—a low-cost, Bowden cable-actuated rotary series viscoelastic actuator that fulfills the bidirectional compatibility requirements to the maximum extend. Components of MRI-VisAct that are placed in the magnet room are built using nonconductive, diamagnetic MRI compatible materials, while ferromagnetic/paramagnetic components are placed in the control room, located outside the MRI room. Power and data transmission are achieved through Bowden-cables and fiber optics, respectively. This arrangement ensures that neuroimaging artifacts are minimized, while safety hazards are eliminated, and the device performance is not affected by the magnetic field. MRIVisAct works under closed-loop torque control enabled through series viscoelastic actuation. MRI-VisAct is fully customizable; it can serve as the building block of higher degrees of freedom MRI compatible robotic devices
    corecore