317 research outputs found

    Optimal and Efficient Searchable Encryption with Single Trapdoor for Multi-Owner Data Sharing in Federated Cloud Computing

    Get PDF
    Cloud computing, an Internet based computing model, has changed the way of data owners store and manage data. In such environment, data sharing is very important with more efficient data access control. Issuing an aggregate key to users on data enables and authorizes them to search for data of select encrypted files using trapdoor or encrypted keyword. The existing schemes defined for this purpose do have certain limitations. For instance, Cui et al. scheme is elegant but lacks in flexibility in access control in presence of multiple data owners sharing data to users. Its single trapdoor approach needs transformation into individual trapdoors to access data of specific data owner. Moreover, the existing schemes including that of Cui et al. does not support federated cloud.  In this paper we proposed an efficient key aggregate searchable encryption scheme which enables multiple featuressuch as support for truly single aggregate key to access data of many data owners, federated cloud support,query privacy, controlled search process and security against cross-pairing attack. It has algorithms for setup, keygen, encrypt, extract, aggregate, trapdoor, test and federator. In multi-user setting it is designed to serve data owners and users with secure data sharing through key aggregate searchable encryption The proposed scheme supports federated cloud. Experimental results revealed that the proposed scheme is provably secure withrelatively less computational overhead and time complexity when compared with the state of the art

    Survey on securing data storage in the cloud

    Get PDF
    Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fascinating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud storage security in association with cloud computing. After an overview of the cloud storage system and its security problem, we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges, and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art knowledge to new researchers who would like to join this exciting new field

    Public Key Encryption with Keyword Search from Lattices in Multiuser Environments

    Get PDF
    A public key encryption scheme with keyword search capabilities is proposed using lattices for applications in multiuser environments. The proposed scheme enables a cloud server to check if any given encrypted data contains certain keywords specified by multiple users, but the server would not have knowledge of the keywords specified by the users or the contents of the encrypted data, which provides data privacy as well as privacy for user queries in multiuser environments. It can be proven secure under the standard learning with errors assumption in the random oracle model

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classifiers

    Get PDF
    Homomorphic encryption (HE) systems enable computations on encrypted data, without decrypting and without knowledge of the secret key. In this work, we describe an optimized Ring Learning With Errors (RLWE) based implementation of a variant of the HE system recently proposed by Gentry, Sahai and Waters (GSW). Although this system was widely believed to be less efficient than its contemporaries, we demonstrate quite the opposite behavior for a large class of applications. We first highlight and carefully exploit the algebraic features of the system to achieve significant speedup over the state-of-the-art HE implementation, namely the IBM homomorphic encryption library (HElib). We introduce several optimizations on top of our HE implementation, and use the resulting scheme to construct a homomorphic Bayesian spam filter, secure multiple keyword search, and a homomorphic evaluator for binary decision trees. Our results show a factor of 10× improvement in performance (under the same security settings and CPU platforms) compared to IBM HElib for these applications. Our system is built to be easily portable to GPUs (unlike IBM HElib) which results in an additional speedup of up to a factor of 103.5× to offer an overall speedup of 1,035×
    • …
    corecore