533 research outputs found

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    Registration Combining Wide and Narrow Baseline Feature Tracking Techniques for Markerless AR Systems

    Get PDF
    Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. Registration is one of the most difficult problems currently limiting the usability of AR systems. In this paper, we propose a novel natural feature tracking based registration method for AR applications. The proposed method has following advantages: (1) it is simple and efficient, as no man-made markers are needed for both indoor and outdoor AR applications; moreover, it can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) Thanks to the reduced SIFT based augmented optical flow tracker, the virtual scene can still be augmented on the specified areas even under the circumstances of occlusion and large changes in viewpoint during the entire process. (3) It is easy to use, because the adaptive classification tree based matching strategy can give us fast and accurate initialization, even when the initial camera is different from the reference image to a large degree. Experimental evaluations validate the performance of the proposed method for online pose tracking and augmentation

    Efficient Model-Based Object Pose Estimation Based on Multi-Template Tracking and PnP Algorithms

    Get PDF
    [[abstract]]Three-Dimensional (3D) object pose estimation plays a crucial role in computer vision because it is an essential function in many practical applications. In this paper, we propose a real-time model-based object pose estimation algorithm, which integrates template matching and Perspective-n-Point (PnP) pose estimation methods to deal with this issue efficiently. The proposed method firstly extracts and matches keypoints of the scene image and the object reference image. Based on the matched keypoints, a two-dimensional (2D) planar transformation between the reference image and the detected object can be formulated by a homography matrix, which can initialize a template tracking algorithm efficiently. Based on the template tracking result, the correspondence between image features and control points of the Computer-Aided Design (CAD) model of the object can be determined efficiently, thus leading to a fast 3D pose tracking result. Finally, the 3D pose of the object with respect to the camera is estimated by a PnP solver based on the tracked 2D-3D correspondences, which improves the accuracy of the pose estimation. Experimental results show that the proposed method not only achieves real-time performance in tracking multiple objects, but also provides accurate pose estimation results. These advantages make the proposed method suitable for many practical applications, such as augmented reality.[[notice]]補正完

    Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images

    Full text link
    The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual constraints between bone and cartilage, and also between different cartilages. First, based on the fact that the cartilage grows in only certain area of the corresponding bone surface, we extract the distance features of not only to the surface of the bone, but more informatively, to the densely registered anatomical landmarks on the bone surface. Second, we introduce a set of iterative discriminative classifiers that at each iteration, probability comparison features are constructed from the class confidence maps derived by previously learned classifiers. These features automatically embed the semantic context information between different cartilages of interest. Validated on a total of 176 volumes from the Osteoarthritis Initiative (OAI) dataset, the proposed approach demonstrates high robustness and accuracy of segmentation in comparison with existing state-of-the-art MR cartilage segmentation methods.Comment: MICCAI 2013: Workshop on Medical Computer Visio
    • …
    corecore