885 research outputs found

    Methods to Design Microstrip Antennas for Modern Applications

    Get PDF

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    State-of-the-Art Antenna Technology for Cloud Radio Access Networks (C-RANs)

    Get PDF
    The cloud radio access network (C-RAN) is one of the most efficient, low-cost, and energy-efficient radio access techniques proposed as a potential candidate for the implementation of next-generation (NGN) mobile base stations (BSs). A high-performance C-RAN requires an exceptional broadband radio frequency (RF) front end that cannot be guaranteed without remarkable antenna elements. In response, we present state-of-the-art antenna elements that are potential candidates for the implementation of the C-RAN’s RF front end. We present an overview of C-RAN technology and different types of planar antennas operating at the future proposed fifth-generation (5G) bands that may include the following: (i) ultra-wide band (UWB) (3–12 GHz), (ii) 28/38 GHz, and (iii) 60-GHz radio. Further, we propose different planar antennas suitable for the implementation of C-RAN systems. We design, simulate, and optimize the proposed antennas according to the desired specifications covering the required frequency bands. The key design parameters are calculated, analyzed, and discussed. In our research work, the proposed antennas are lightweight, low-cost, and easy to integrate with other microwave and millimeter-wave (MMW) circuits. We also consider different implementation strategies that can be helpful in the execution of large-scale multiple-input multiple-output (MIMO) networks

    Antena de placa suspendida con polarización circular y sentido de giro configurable

    Get PDF
    Introducción: Las antenas con polarización circular (APC) permiten reducir el efecto de rotación de Faraday debido a la presencia de la ionosfera, el cual ocasiona una significante pérdida de potencia frente al caso de utilizar antenas con polarización lineal (ALP) [1]-[2], por lo tanto, estas antenas son ampliamente utilizadas para aplicaciones en telemetría espacial de satélites, sondas espaciales y misiles balísticos entre otras [2]. Por otra parte, las antenas de placa suspendida (APS) brindan la posibilidad de obtener mayores niveles de ganancia máxima y ancho de banda de impedancia frente a las tecnologías convencionales. Así mismo, resulta útil el poder seleccionar el sentido de giro más apropiado, dependiendo de las condiciones de propagación en los enlaces de subida/bajada. Objetivo: Diseñar una (APC) con sentido de giro seleccionable para aplicaciones en satélites pequeños, usando la tecnología (APS), tal que posea niveles de ganancia y ancho de banda superiores a las obtenidas con tecnologías convencionales. Metodología: El diseño de la antena parte de modelos propuestos en la literatura, mediante los cuales se diseña una geometría inicial compuesta por un parche suspendido con alimentación en L y un acoplador híbrido, para luego optimizar dicha geometría mediante análisis paramétricos llevados a cabo con simuladores electromagnéticos apropiados. Resultados: El diseño propuesto presenta un ancho de banda de impedancia del 34.39% y una ganancia máxima de 8.75 dBi a una frecuencia de 2.35GHz. Conclusiones: La técnica de alimentador en forma de L para parches suspendidos mejora el comportamiento de la antena en impedancia, relación axial  y ganancia máxima.  Introduction: Circular polarization antennas (CPA) are able to reduce the “Faraday rotation” effect due to the ionosphere, which causes a significant power losses compared to the case of using linear polarization antennas (LPA) [1]-[2]. Therefore, these antennas are widely used for space telemetry applications of satellites, space probes and ballistic missiles among others [2]. Furthermore, suspended plate antennas (SPA) offer the possibility to obtain largest levels of maximum gain and impedance bandwidth compared to those obtained with conventional technologies. Likewise, it is useful to be able to select the most appropriate sense of rotation, depending on the propagation conditions in the up/down links.  Objective: To design a CPA with configurable sense of rotation for small satellite applications, using SPA technology, such that it has gain and bandwidth levels higher than those obtained with conventional technologies. Method: The antenna design is based on models proposed in the literature, through which an initial geometry consisting of a suspended patch with an L-shaped feeder and a hybrid coupler is designed. Subsequently, geometry optimization by parametric analysis is carried out with appropriate electromagnetic simulators.  Results:  The proposed design has an impedance bandwidth of 34.39% and a maximum gain of 8.75 dBi at a frequency of 2.35GHz. Conclusions: The L-shaped feeder technique for suspended patches improves the behavior of the antenna in axial ratio, impedance and maximal gain

    Design and development of dual-Polarised photovoltaic solar antennae for Ku-band SatComsp.

    Get PDF
    The aim of this thesis is to review the state-of-the-art of transparent patch antennae and to develop design techniques for the experimental development of dual-band, dual-polarised compact transparent patch antennae integrated with solar cells for Ku-band satellite applications. It can be specifically used for Fixed-Satellite-Services (FSS) operating over the frequency range from 11.7 GHz to 12.22 GHz (downlink) and 14.0 GHz to 14.5 GHz (uplink) bands. The research reported in this thesis demonstrated a suspended meshed patch antennae serves as a basic building-block element for a Ku-band dual-polarised transparent array antennae for long distance communications. The results are shown that the use of a suspended patch above a printed radiating patch and ground plane (all transparent) provides dual-band operation for the uplink and downlink. In this work, firstly, a compact low-profile linearly polarised meshed element has been designed, and simulated in CST Microwave Studio electromagnetic simulation software. The photovoltaic antennae element was then fabricated and measured. The comparison between the experimental results and simulation by CST demonstrates good agreement between predicted and practical measurements. The developed antennae element achieved the overall broad bandwidth of more than 1GHz (500 MHz in each of the uplink and downlink bands), and the nominal element gain is 6.055 dBi (downlink) and 7.61 dBi (uplink). A good compromise between the RF performance and the transparency is also obtained with optical transparency of 84% and negligible degradation of the RF performance. The design is then extended to develop a Ku-band photovoltaic antennae element for dualpolarised operation This element could be used for frequency re-use in Ku-band satellite downlink and uplink communicationsin order to double capacity. In addition, the simulation of a 2 x2 sub-array of dual polarised transparent antennae elements (using the experimentally measured performance of the single dual-polarised element) is presented. It has yielded a narrow beam with increased gain of 13 dBi and a cross-polar discrimination of greater than 30 dB is demonstrated, which is a requirement for frequency re-use operation. Hence, the dual-polarised 4-element sub-array described herein could be utilised as the primary building block for a 2D SatCom phased array antennae. In order to meet the full requirements of Kuband SatCom communications employing frequency re-use which essentially doubles the achievable capacity, i.e. two data channels can use the same frequency bands simultaneously using the two orthogonal polarisations with high cross-polar isolation. Using these new designs providing new knowledge in the field of photovoltaic communication antennae at high frequencies, and bridge the associated drawbacks with the current PV antennae

    Recent Advances in Antenna Design for 5G Heterogeneous Networks

    Get PDF
    The aim of this book is to highlight up to date exploited technologies and approaches in terms of antenna designs and requirements. In this regard, this book targets a broad range of subjects, including the microstrip antenna and the dipole and printed monopole antenna. The varieties of antenna designs, along with several different approaches to improve their overall performance, have given this book a great value, in which makes this book is deemed as a good reference for practicing engineers and under/postgraduate students working in this field. The key technology trends in antenna design as part of the mobile communication evolution have mainly focused on multiband, wideband, and MIMO antennas, and all have been clearly presented, studied and implemented within this book. The forthcoming 5G systems consider a truly mobile multimedia platform that constitutes a converged networking arena that not only includes legacy heterogeneous mobile networks but advanced radio interfaces and the possibility to operate at mm wave frequencies to capitalize on the large swathes of available bandwidth. This provides the impetus for a new breed of antenna design that, in principle, should be multimode in nature, energy efficient, and, above all, able to operate at the mm wave band, placing new design drivers on the antenna design. Thus, this book proposes to investigate advanced 5G antennas for heterogeneous applications that can operate in the range of 5G spectrums and to meet the essential requirements of 5G systems such as low latency, large bandwidth, and high gains and efficiencies
    corecore