67,592 research outputs found

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Key management in wireless sensor networks

    Get PDF
    We refer to a distributed architecture consisting of sensor nodes connected by wireless links and organized in a tree shaped hierarchy. We present a paradigm for the management of the cryptographic keys used by nodes to communicate, and we consider the problems connected with key generation, distribution, and replacement. In our paradigm, names are assigned to nodes by using a uniform scheme, which is based on the position of the given node in the node hierarchy. Each node holds a hierarchical key to communicate with its ancestors, and a level key to communicate with its siblings. A single, publicly-known parametric one-way function is used to assign hierarchical keys to nodes, in an iterative procedure that starts from the key of the root of the node hierarchy, and proceeds downwards to the lowest hierarchical levels. A similar procedure is used to generate the level keys. The total memory requirements for key storage are extremely low. The number of keys exchanged in a key replacement process is kept to a minimum. Dynamic access control is fully supported, whereby new nodes can be added to the node hierarchy, and existing nodes can be evicted from the hierarchy

    Practical security scheme design for resource-constrained wireless networks

    Get PDF
    The implementation of ubiquitous computing (or pervasive computing) can leverage various types of resource-constrained wireless networks such as wireless sensor networks and wireless personal area networks. These resource-constrained wireless networks are vulnerable to many malicious attacks that often cause leakage, alteration and destruction of critical information due to the insecurity of wireless communication and the tampers of devices. Meanwhile, the constraints of resources, the lack of centralized management, and the demands of mobility of these networks often make traditional security mechanisms inefficient or infeasible. So, the resource-constrained wireless networks pose new challenges for information assurance and call for practical, efficient and effective solutions. In this research, we focus on wireless sensor networks and aim at enhancing confidentiality, authenticity, availability and integrity, for wireless sensor networks. Particularly, we identify three important problems as our research targets: (1) key management for wireless sensor networks (for confidentiality), (2) filtering false data injection and DoS attacks in wireless sensor networks (for authenticity and availability), and (3) secure network coding (for integrity). We investigate a diversity of malicious attacks against wireless sensor networks and design a number of practical schemes for establishing pairwise keys between sensor nodes, filtering false data injection and DoS attacks, and securing network coding against pollution attacks for wireless sensor networks. Our contributions from this research are fourfold: (1) We give a taxonomy of malicious attacks for wireless sensor networks. (2) We design a group-based key management scheme using deployment knowledge for wireless sensor networks to establish pair-wise keys between sensor nodes. (3) We propose an en-route scheme for filtering false data injection and DoS attacks in wireless sensor networks. (4) We present two efficient schemes for securing normal and XOR network coding against pollution attacks. Simulation and experimental results show that our solutions outperform existing ones and are suitable for resource-constrained wireless sensor networks in terms of computation overhead, communication cost, memory requirement, and so on

    Efficient key management in wireless sensor network security

    Get PDF
    Wireless sensor network is a multi-hop ad hoc network formed by a large number of low-cost micro-sensor nodes which communicate through radio channels. It is widely used in many areas in modern society and attracts a lot of attention from researchers. This research is on wireless sensor network security and it focuses on key management in hierarchical wireless sensor networks. Through literature review, the drawback and weakness of existing key management schemes are analyzed from various aspects including key establishment, key distribution, key update, authentication and node operation mechanism. Assessment criteria for key management scheme are proposed under different requirements and constraints of wireless sensor networks. The security criteria cover keying model, key distribution, key update, node operation and resilience. For cluster based hierarchical wireless sensor networks, an assistant node is introduced in a cluster to deal with the situation of cluster head compromise and to keep the member nodes securely staying in the network. With introduction of assistant nodes, a complete secure efficient hierarchical key management scheme (SEHKM) for wireless sensor network is proposed. The scheme supports three types of keys and the big improvement over existing key management schemes is on group key update, which is based on pseudo-random numbers and group Diffie-Hellman. The analysis and evaluation have shown that that SEHKM offers strong security with efficient operation from energy consumption point of view

    A Security Framework for Wireless Sensor Networks Utilizing a Unique Session Key

    Get PDF
    Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Many key management protocols have been specifically designed for wireless sensor networks. However, most of the key management protocols focus on the establishment of the required keys or the removal of the compromised keys. The design of these key management protocols does not consider the support of higher level security applications. When the applications are integrated later in sensor networks, new mechanisms must be designed. In this paper, we propose a security framework, uKeying, for wireless sensor networks. This framework can be easily extended to support many security applications. It includes three components: a security mechanism to provide secrecy for communications in sensor networks, an efficient session key distribution scheme, and a centralized key revocation scheme. The proposed framework does not depend on a specific key distribution scheme and can be used to support many security applications, such as secure group communications. Our analysis shows that the framework is secure, efficient, and extensible. The simulation and results also reveal for the first time that a centralized key revocation scheme can also attain a high efficiency

    An Identity Based Key Management Scheme in Wireless Sensor Networks

    Full text link
    Pairwise key establishment is one of the fundamental security services in sensor networks which enables sensor nodes in a sensor network to communicate securely with each other using cryptographic techniques. It is not feasible to apply traditional public key management techniques in resource-constrained sensor nodes, and also because the sensor nodes are vulnerable to physical capture. In this paper, we introduce a new scheme called the identity based key pre-distribution using a pseudo random function (IBPRF), which has better trade-off between communication overhead, network connectivity and resilience against node capture compared to the other key pre-distribution schemes. Our scheme can be easily adapted in mobile sensor networks. This scheme supports the addition of new sensor nodes after the initial deployment and also works for any deployment topology. In addition, we propose an improved version of our scheme to support large sensor networks.Comment: 7 pages, Published in Proceedings of 4th Asian International Mobile Computing Conference (AMOC 2006), Kolkata, India, pp. 70-76, January 4-7, 200
    • …
    corecore