11 research outputs found

    Gaussian Process Model Re-Use

    Get PDF

    Kernelised Bayesian transfer learning for population-based structural health monitoring

    Get PDF
    Population-based structural health monitoring is the process of utilising information from a group of structures in order to perform and improve inferences that generalise to the complete population. A significant challenge in inferring a general representation for structures is that feature spaces will be inconsistent for a wide variety of populations and datasets. This scenario, where the dimensions of the feature spaces for each structure are different, occurs for a variety of reasons. Firstly, the group of structures themselves may be a heterogeneous population, where differences occur due to topology, leading to inconsistency in modal-based features. Secondly, feature spaces may be inconsistent across the population due to differences in the raw data (i.e. different sample frequencies etc.) and feature extraction processing. In this context, where feature spaces are inconsistent between different structure in a population, a general model that describes their behaviours becomes challenging to infer. This issue is because dimensionality reduction must be performed such that each domain’s feature set projects to a consistent shared latent space where a model can be inferred. This paper introduces a technique, kernelised Bayesian transfer learning, that seeks to learn a projection matrix and kernel embedding that map to a latent space where a discriminative classifier can be inferred in a Bayesian manner, using variational inference. This algorithm allows a general discriminative classifier to be inferred across a population where the feature spaces for each structure are inconsistent. A numerical case study is presented, demonstrating the effectiveness of this approach and for providing a discussion of its implications for population-based structural health monitoring

    Application of transfer learning to predict drug-induced human in vivo gene expression changes using rat in vitro and in vivo data

    Get PDF
    The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.</p

    Application of transfer learning to predict drug-induced human in vivo gene expression changes using rat in vitro and in vivo data

    Get PDF
    The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.</p

    Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces

    Full text link
    © 2018 IEEE. Domain adaptation aims to leverage knowledge acquired from a related domain (called a source domain) to improve the efficiency of completing a prediction task (classification or regression) in the current domain (called the target domain), which has a different probability distribution from the source domain. Although domain adaptation has been widely studied, most existing research has focused on homogeneous domain adaptation, where both domains have identical feature spaces. Recently, a new challenge proposed in this area is heterogeneous domain adaptation where both the probability distributions and the feature spaces are different. Moreover, in both homogeneous and heterogeneous domain adaptation, the greatest efforts and major achievements have been made with classification tasks, while successful solutions for tackling regression problems are limited. This paper proposes two innovative fuzzy rule-based methods to deal with regression problems. The first method, called fuzzy homogeneous domain adaptation, handles homogeneous spaces while the second method, called fuzzy heterogeneous domain adaptation, handles heterogeneous spaces. Fuzzy rules are first generated from the source domain through a learning process; these rules, also known as knowledge, are then transferred to the target domain by establishing a latent feature space to minimize the gap between the feature spaces of the two domains. Through experiments on synthetic datasets, we demonstrate the effectiveness of both methods and discuss the impact of some of the significant parameters that affect performance. Experiments on real-world datasets also show that the proposed methods improve the performance of the target model over an existing source model or a model built using a small amount of target data

    Online Bayesian Multiple Kernel Bipartite Ranking

    Get PDF
    Abstract Bipartite ranking aims to maximize the area under the ROC curve (AUC) of a decision function. To tackle this problem when the data appears sequentially, existing online AUC maximization methods focus on seeking a point estimate of the decision function in a linear or predefined single kernel space, and cannot learn effective kernels automatically from the streaming data. In this paper, we first develop a Bayesian multiple kernel bipartite ranking model, which circumvents the kernel selection problem by estimating a posterior distribution over the model weights. To make our model applicable to streaming data, we then present a kernelized online Bayesian passive-aggressive learning framework by maintaining a variational approximation to the posterior based on data augmentation. Furthermore, to efficiently deal with large-scale data, we design a fixed budget strategy which can effectively control online model complexity. Extensive experimental studies confirm the superiority of our Bayesian multi-kernel approach

    Probabilistic inference for structural health monitoring: new modes of learning from data

    Get PDF
    In data-driven structural health monitoring (SHM), the signals recorded from systems in operation can be noisy and incomplete. Data corresponding to each of the operational, environmental, and damage states are rarely available a priori; furthermore, labeling to describe the measurements is often unavailable. In consequence, the algorithms used to implement SHM should be robust and adaptive while accommodating for missing information in the training data—such that new information can be included if it becomes available. By reviewing novel techniques for statistical learning (introduced in previous work), it is argued that probabilistic algorithms offer a natural solution to the modeling of SHM data in practice. In three case-studies, probabilistic methods are adapted for applications to SHM signals, including semisupervised learning, active learning, and multitask learning

    Gaussian processes for modeling of facial expressions

    Get PDF
    Automated analysis of facial expressions has been gaining significant attention over the past years. This stems from the fact that it constitutes the primal step toward developing some of the next-generation computer technologies that can make an impact in many domains, ranging from medical imaging and health assessment to marketing and education. No matter the target application, the need to deploy systems under demanding, real-world conditions that can generalize well across the population is urgent. Hence, careful consideration of numerous factors has to be taken prior to designing such a system. The work presented in this thesis focuses on tackling two important problems in automated analysis of facial expressions: (i) view-invariant facial expression analysis; (ii) modeling of the structural patterns in the face, in terms of well coordinated facial muscle movements. Driven by the necessity for efficient and accurate inference mechanisms we explore machine learning techniques based on the probabilistic framework of Gaussian processes (GPs). Our ultimate goal is to design powerful models that can efficiently handle imagery with spontaneously displayed facial expressions, and explain in detail the complex configurations behind the human face in real-world situations. To effectively decouple the head pose and expression in the presence of large out-of-plane head rotations we introduce a manifold learning approach based on multi-view learning strategies. Contrary to the majority of existing methods that typically treat the numerous poses as individual problems, in this model we first learn a discriminative manifold shared by multiple views of a facial expression. Subsequently, we perform facial expression classification in the expression manifold. Hence, the pose normalization problem is solved by aligning the facial expressions from different poses in a common latent space. We demonstrate that the recovered manifold can efficiently generalize to various poses and expressions even from a small amount of training data, while also being largely robust to corrupted image features due to illumination variations. State-of-the-art performance is achieved in the task of facial expression classification of basic emotions. The methods that we propose for learning the structure in the configuration of the muscle movements represent some of the first attempts in the field of analysis and intensity estimation of facial expressions. In these models, we extend our multi-view approach to exploit relationships not only in the input features but also in the multi-output labels. The structure of the outputs is imposed into the recovered manifold either from heuristically defined hard constraints, or in an auto-encoded manner, where the structure is learned automatically from the input data. The resulting models are proven to be robust to data with imbalanced expression categories, due to our proposed Bayesian learning of the target manifold. We also propose a novel regression approach based on product of GP experts where we take into account people's individual expressiveness in order to adapt the learned models on each subject. We demonstrate the superior performance of our proposed models on the task of facial expression recognition and intensity estimation.Open Acces
    corecore