77 research outputs found

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201

    Streaming Algorithms for Graph k-Matching with Optimal or Near-Optimal Update Time

    Get PDF

    Maximum Coverage in the Data Stream Model: Parameterized and Generalized

    Get PDF
    We present algorithms for the Max-Cover and Max-Unique-Cover problems in the data stream model. The input to both problems are mm subsets of a universe of size nn and a value k[m]k\in [m]. In Max-Cover, the problem is to find a collection of at most kk sets such that the number of elements covered by at least one set is maximized. In Max-Unique-Cover, the problem is to find a collection of at most kk sets such that the number of elements covered by exactly one set is maximized. Our goal is to design single-pass algorithms that use space that is sublinear in the input size. Our main algorithmic results are: If the sets have size at most dd, there exist single-pass algorithms using O~(dd+1kd)\tilde{O}(d^{d+1} k^d) space that solve both problems exactly. This is optimal up to polylogarithmic factors for constant dd. If each element appears in at most rr sets, we present single pass algorithms using O~(k2r/ϵ3)\tilde{O}(k^2 r/\epsilon^3) space that return a 1+ϵ1+\epsilon approximation in the case of Max-Cover. We also present a single-pass algorithm using slightly more memory, i.e., O~(k3r/ϵ4)\tilde{O}(k^3 r/\epsilon^{4}) space, that 1+ϵ1+\epsilon approximates Max-Unique-Cover. In contrast to the above results, when dd and rr are arbitrary, any constant pass 1+ϵ1+\epsilon approximation algorithm for either problem requires Ω(ϵ2m)\Omega(\epsilon^{-2}m) space but a single pass O(ϵ2mk)O(\epsilon^{-2}mk) space algorithm exists. In fact any constant-pass algorithm with an approximation better than e/(e1)e/(e-1) and e11/ke^{1-1/k} for Max-Cover and Max-Unique-Cover respectively requires Ω(m/k2)\Omega(m/k^2) space when dd and rr are unrestricted. En route, we also obtain an algorithm for a parameterized version of the streaming Set-Cover problem.Comment: Conference version to appear at ICDT 202

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Planar Matching in Streams Revisited

    Get PDF
    We present data stream algorithms for estimating the size or weight of the maximum matching in low arboricity graphs. A large body of work has focused on improving the constant approximation factor for general graphs when the data stream algorithm is permitted O(n polylog n) space where n is the number of nodes. This space is necessary if the algorithm must return the matching. Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum cardinality of a matching in a planar graph up to a factor of 24+epsilon using O(epsilon^{-2} n^{2/3} polylog n) space. We first present an algorithm (with a simple analysis) that improves this to a factor 5+epsilon using the same space. We also improve upon the previous results for other graphs with bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs that can be implemented using O(log n) space in the adjacency list data stream model where the stream is a concatenation of the adjacency lists of the graph. The main idea behind our results is finding "local" fractional matchings, i.e., fractional matchings where the value of any edge e is solely determined by the edges sharing an endpoint with e. Our work also improves upon the results for the dynamic data stream model where the stream consists of a sequence of edges being inserted and deleted from the graph. We also extend our results to weighted graphs, improving over the bounds given by Bury and Schwiegelshohn (ESA 2015), via a reduction to the unweighted problem that increases the approximation by at most a factor of two
    corecore