985 research outputs found

    A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy

    Full text link
    Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    A Neural Network Architecture for Figure-ground Separation of Connected Scenic Figures

    Full text link
    A neural network model, called an FBF network, is proposed for automatic parallel separation of multiple image figures from each other and their backgrounds in noisy grayscale or multi-colored images. The figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) neural networks for automatic target recognition. An FBF network can automatically separate the disconnected but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network's design also clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour System (BCS) in the order FCS-BCS-FCS, hence the term FBF, that have been derived from an analysis of biological vision. The FCS operations include the use of nonlinear shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and complete boundaries in up to 50 percent noise, while suppressing the noise. A modified CORT-X filter is described which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.Air Force Office of Scientific Research (90-0175); Army Research Office (DAAL-03-88-K0088); Defense Advanced Research Projects Agency (90-0083); Hughes Research Laboratories (S1-804481-D, S1-903136); American Society for Engineering Educatio

    Surface-guided computing to analyze subcellular morphology and membrane-associated signals in 3D

    Full text link
    Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals. Here, we introduce u-Unwrap3D, a framework to remap arbitrarily complex 3D cell surfaces and membrane-associated signals into equivalent lower dimensional representations. The mappings are bidirectional, allowing the application of image processing operations in the data representation best suited for the task and to subsequently present the results in any of the other representations, including the original 3D cell surface. Leveraging this surface-guided computing paradigm, we track segmented surface motifs in 2D to quantify the recruitment of Septin polymers by blebbing events; we quantify actin enrichment in peripheral ruffles; and we measure the speed of ruffle movement along topographically complex cell surfaces. Thus, u-Unwrap3D provides access to spatiotemporal analyses of cell biological parameters on unconstrained 3D surface geometries and signals.Comment: 49 pages, 10 figure

    On the Dimensionality and Utility of Convolutional Autoencoder’s Latent Space Trained with Topology-Preserving Spectral EEG Head-Maps

    Get PDF
    Electroencephalography (EEG) signals can be analyzed in the temporal, spatial, or frequency domains. Noise and artifacts during the data acquisition phase contaminate these signals adding difficulties in their analysis. Techniques such as Independent Component Analysis (ICA) require human intervention to remove noise and artifacts. Autoencoders have automatized artifact detection and removal by representing inputs in a lower dimensional latent space. However, little research is devoted to understanding the minimum dimension of such latent space that allows meaningful input reconstruction. Person-specific convolutional autoencoders are designed by manipulating the size of their latent space. A sliding window technique with overlapping is employed to segment varied-sized windows. Five topographic head-maps are formed in the frequency domain for each window. The latent space of autoencoders is assessed using the input reconstruction capacity and classification utility. Findings indicate that the minimal latent space dimension is 25% of the size of the topographic maps for achieving maximum reconstruction capacity and maximizing classification accuracy, which is achieved with a window length of at least 1 s and a shift of 125 ms, using the 128 Hz sampling rate. This research contributes to the body of knowledge with an architectural pipeline for eliminating redundant EEG data while preserving relevant features with deep autoencoders

    Prä- und postnatale Entwicklung topographischer Transformationen im Gehirn

    Get PDF
    This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.Die vorliegende Arbeit verbindet zwei bisher unabhängig untersuchte Gebiete der theoretischen Neurowissenschaften: zum Einen die vorgeburtliche Selbstorganisation topographischer Verbindungsstrukturen und zum Anderen die invariante Objekterkennung, das heisst, die Erkennung von Objekten trotz ihrer mannigfaltigen retinalen Darstellungen (zum Beispiel durch Verschiebungen oder Skalierungen). Die topographische Repräsentierung wird hierbei während der Selbstorganisation als Koordinatensystem genutzt, um Invarianztransformationen zu implementieren. Dies zeigt die Möglichkeit auf, dass sich das Gehirn bereits vorgeburtlich detailliert selbstorganisieren kann, um nachgeburtlich sofort invariant Erkennen zu können. Im Detail führt Kapitel 2 in ein neues, probabilistisch generatives und analytisch lösbares Modell zur Ontogenese topographischer Transformationen ein. Dem Modell liegt die Annahme zugrunde, dass Ausgabezellen des Systems nicht völlig unkorreliert sind, sondern eine a priori gegebene Korrelation erreichen wollen. Da die Eingabezellen nachbarschaftskorreliert sind, hervorgerufen durch retinale Wellen, ergibt sich mit der Annahme rein erregender Verbindungen eine eindeutige topographische synaptische Verbindungsstruktur. Diese entspricht der bei vielen Spezies gefundenen topographischen Karten, z.B. der Retinotopie zwischen der Retina und dem LGN, oder zwischen dem LGN und dem Neokortex. Kapitel 3 nutzt eine abstraktere Formulierung des Retinotopiemechanismus, welche durch adiabitische Elimination der Aktivitätsvariablen erreicht wird, um den Effekt retinaler Wellen auf ein Modell höherer kortikaler Informationsverarbeitung zu untersuchen. Zu diesem Zweck wird der Kortex vereinfacht als bilineares Modell betrachtet, um einfache modulatorische Nichtlinearitäten mit in Betracht ziehen zu können. Zusätzlich zu den Ein- und Ausgabezellen kommen in diesem Modell Kontrolleinheiten zum Einsatz, welche den Informationsfluss aktiv steuern können und sich durch Wettbewerb und pränatalem Lernen auf verschiedene Muster retinaler Wellen spezialisieren. Die Ergebnisse zeigen, dass die entstehenden Verbindungsstrukturen affinen topographischen Abbildungen (insbesondere Translation, Skalierung und Orientierung) entsprechen, die nach Augenöffnen invariante Erkennung ermöglichen, da sie Objekte in der Eingabe in eine normalisierte Repräsentierung transformieren können. Das Modell wird für den eindimensionalen Fall ausführlich analysiert und die Funktionalität für den biologisch relevanteren zweidimensionalen Fall aufgezeigt. Kapitel 4 verallgemeinert das bilineare Modell des dritten Kapitels zu einem mehrschichtigen Modell, die shifter curcuits''. Diese ermöglichen eine logarithmisch in der Anzahl der Eingabezellen wachsende Anzahl an Synapsen, statt einer prohibitiv quadratischen Anzahl. Ausgenutzt wird die Orthogonalität von Translationen im Raum der Verbindungsstrukturen um diese durch harten Wettbewerb an einzelnen Synapsen zu organisieren. Neurobiologisch ist dieser Mechanismus durch Wettbewerb um einen wachstumsregulierenden Transmitter realisierbar. Kapitel 5 nutzt Methoden des probabilistischen Lernens, um das bilineare Modell auf das Lernen von optimalen Repräsentation der Eingabestatistiken zu optimieren. Da statistischen Methoden zweiter Ordnung, wie zum Beispiel das generative Modell aus Kapitel 2, keine lokalisierten rezeptiven Felder ermöglichen und somit keine (örtliche) Topographie möglich ist, wird sparseness'' verwendet um statistischen Abhängigkeiten höherer Ordnung zu lernen und gleichzeitig Topographie zu implementieren. Anwendungen des so formulierten Modells auf natürliche Bilder zeigen, dass lokalisierte, bandpass filternde rezeptive Felder entstehen, die primären kortikalen rezeptiven Feldern stark ähneln. Desweiteren entstehen durch die erzwungene Topographie Orientierungs- und Frequenzkarten, die ebenfalls kortikalen Karten ähneln. Eine Untersuchung des Modells mit zusätzlicher slowness'' der Ausgabezellen und in zeitlicher Nähe gezeigten transformierten natürlichen Eingabemustern zeigt, dass verschiedene Kontrolleinheiten konsistente und den Eingabetransformationen entsprechende rezeptive Felder entwickeln und somit invariante Darstellungen bezüglich der gezeigten Eingaben entwickeln

    Development of Maps of Simple and Complex Cells in the Primary Visual Cortex

    Get PDF
    Hubel and Wiesel (1962) classified primary visual cortex (V1) neurons as either simple, with responses modulated by the spatial phase of a sine grating, or complex, i.e., largely phase invariant. Much progress has been made in understanding how simple-cells develop, and there are now detailed computational models establishing how they can form topographic maps ordered by orientation preference. There are also models of how complex cells can develop using outputs from simple cells with different phase preferences, but no model of how a topographic orientation map of complex cells could be formed based on the actual connectivity patterns found in V1. Addressing this question is important, because the majority of existing developmental models of simple-cell maps group neurons selective to similar spatial phases together, which is contrary to experimental evidence, and makes it difficult to construct complex cells. Overcoming this limitation is not trivial, because mechanisms responsible for map development drive receptive fields (RF) of nearby neurons to be highly correlated, while co-oriented RFs of opposite phases are anti-correlated. In this work, we model V1 as two topographically organized sheets representing cortical layer 4 and 2/3. Only layer 4 receives direct thalamic input. Both sheets are connected with narrow feed-forward and feedback connectivity. Only layer 2/3 contains strong long-range lateral connectivity, in line with current anatomical findings. Initially all weights in the model are random, and each is modified via a Hebbian learning rule. The model develops smooth, matching, orientation preference maps in both sheets. Layer 4 units become simple cells, with phase preference arranged randomly, while those in layer 2/3 are primarily complex cells. To our knowledge this model is the first explaining how simple cells can develop with random phase preference, and how maps of complex cells can develop, using only realistic patterns of connectivity

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Spiking neural networks for computer vision

    Get PDF
    State-of-the-art computer vision systems use frame-based cameras that sample the visual scene as a series of high-resolution images. These are then processed using convolutional neural networks using neurons with continuous outputs. Biological vision systems use a quite different approach, where the eyes (cameras) sample the visual scene continuously, often with a non-uniform resolution, and generate neural spike events in response to changes in the scene. The resulting spatio-temporal patterns of events are then processed through networks of spiking neurons. Such event-based processing offers advantages in terms of focusing constrained resources on the most salient features of the perceived scene, and those advantages should also accrue to engineered vision systems based upon similar principles. Event-based vision sensors, and event-based processing exemplified by the SpiNNaker (Spiking Neural Network Architecture) machine, can be used to model the biological vision pathway at various levels of detail. Here we use this approach to explore structural synaptic plasticity as a possible mechanism whereby biological vision systems may learn the statistics of their inputs without supervision, pointing the way to engineered vision systems with similar online learning capabilities

    A Neural Model of How the Cortical Subplate Coordinates the Laminar Development of Orientation and Ocular Dominance Maps

    Full text link
    Air Force Office of Scientific Research (F49620-98-1-0108, F49620-0 1-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IIS-97-20333); Office of Naval Research (N00014-01-1-0624
    corecore