3 research outputs found

    Sliding mode control for robust and smooth reference tracking in robot visual servoing

    Full text link
    [EN] An approach based on sliding mode is proposed in this work for reference tracking in robot visual servoing. In particular, 2 sliding mode controls are obtained depending on whether joint accelerations or joint jerks are considered as the discontinuous control action. Both sliding mode controls are extensively compared in a 3D-simulated environment with their equivalent well-known continuous controls, which can be found in the literature, to highlight their similarities and differences. The main advantages of the proposed method are smoothness, robustness, and low computational cost. The applicability and robustness of the proposed approach are substantiated by experimental results using a conventional 6R industrial manipulator (KUKA KR 6 R900 sixx [AGILUS]) for positioning and tracking tasks.Spanish Government, Grant/Award Number: BES-2010-038486; Generalitat Valenciana, Grant/Award Number: BEST/2017/029 and APOSTD/2016/044Mu帽oz-Benavent, P.; Gracia, L.; Solanes, JE.; Esparza, A.; Tornero, J. (2018). Sliding mode control for robust and smooth reference tracking in robot visual servoing. International Journal of Robust and Nonlinear Control. 28(5):1728-1756. https://doi.org/10.1002/rnc.3981S17281756285Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651-670. doi:10.1109/70.538972Chaumette, F., & Hutchinson, S. (2008). Visual Servoing and Visual Tracking. Springer Handbook of Robotics, 563-583. doi:10.1007/978-3-540-30301-5_25Corke, P. (2011). Robotics, Vision and Control. Springer Tracts in Advanced Robotics. doi:10.1007/978-3-642-20144-8RYAN, E. P., & CORLESS, M. (1984). Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous Feedback Control. IMA Journal of Mathematical Control and Information, 1(3), 223-242. doi:10.1093/imamci/1.3.223Chaumette, F., & Hutchinson, S. (2006). Visual servo control. I. Basic approaches. IEEE Robotics & Automation Magazine, 13(4), 82-90. doi:10.1109/mra.2006.250573Chaumette, F., & Hutchinson, S. (2007). Visual servo control. II. Advanced approaches [Tutorial]. IEEE Robotics & Automation Magazine, 14(1), 109-118. doi:10.1109/mra.2007.339609Bonfe M Mainardi E Fantuzzi C Variable structure PID based visual servoing for robotic tracking and manipulation 2002 Lausanne, Switzerland https://doi.org/10.1109/IRDS.2002.1041421Solanes, J. E., Mu帽oz-Benavent, P., Girb茅s, V., Armesto, L., & Tornero, J. (2015). On improving robot image-based visual servoing based on dual-rate reference filtering control strategy. Robotica, 34(12), 2842-2859. doi:10.1017/s0263574715000454Elena M Cristiano M Damiano F Bonfe M Variable structure PID controller for cooperative eye-in-hand/eye-to-hand visual servoing 2003 Istanbul, Turkey https://doi.org/10.1109/CCA.2003.1223145Hashimoto, K., Ebine, T., & Kimura, H. (1996). Visual servoing with hand-eye manipulator-optimal control approach. IEEE Transactions on Robotics and Automation, 12(5), 766-774. doi:10.1109/70.538981Chan A Leonard S Croft EA Little JJ Collision-free visual servoing of an eye-in-hand manipulator via constraint-aware planning and control 2011 San Francisco, CA, USA https://doi.org/10.1109/ACC.2011.5991008Allibert, G., Courtial, E., & Chaumette, F. (2010). Visual Servoing via Nonlinear Predictive Control. Lecture Notes in Control and Information Sciences, 375-393. doi:10.1007/978-1-84996-089-2_20Kragic, D., & Christensen, H. I. (2003). Robust Visual Servoing. The International Journal of Robotics Research, 22(10-11), 923-939. doi:10.1177/027836490302210009Mezouar Y Chaumette F Path planning in image space for robust visual servoing 2000 San Francisco, CA, USA https://doi.org/10.1109/ROBOT.2000.846445Morel, G., Zanne, P., & Plestan, F. (2005). Robust visual servoing: bounding the task function tracking errors. IEEE Transactions on Control Systems Technology, 13(6), 998-1009. doi:10.1109/tcst.2005.857409Hammouda, L., Kaaniche, K., Mekki, H., & Chtourou, M. (2015). Robust visual servoing using global features based on random process. International Journal of Computational Vision and Robotics, 5(2), 138. doi:10.1504/ijcvr.2015.068803Yang YX Liu D Liu H Robot-self-learning visual servoing algorithm using neural networks 2002 Beijing, China https://doi.org/10.1109/ICMLC.2002.1174473Sadeghzadeh, M., Calvert, D., & Abdullah, H. A. (2014). Self-Learning Visual Servoing of Robot Manipulator Using Explanation-Based Fuzzy Neural Networks and Q-Learning. Journal of Intelligent & Robotic Systems, 78(1), 83-104. doi:10.1007/s10846-014-0151-5Lee AX Levine S Abbeel P Learning Visual Servoing With Deep Features and Fitted Q-Iteration 2017Fakhry, H. H., & Wilson, W. J. (1996). A modified resolved acceleration controller for position-based visual servoing. Mathematical and Computer Modelling, 24(5-6), 1-9. doi:10.1016/0895-7177(96)00112-4Keshmiri, M., Wen-Fang Xie, & Mohebbi, A. (2014). Augmented Image-Based Visual Servoing of a Manipulator Using Acceleration Command. IEEE Transactions on Industrial Electronics, 61(10), 5444-5452. doi:10.1109/tie.2014.2300048Edwards, C., & Spurgeon, S. (1998). Sliding Mode Control. doi:10.1201/9781498701822Zanne P Morel G Piestan F Robust vision based 3D trajectory tracking using sliding mode control 2000 San Francisco, CA, USAOliveira TR Peixoto AJ Leite AC Hsu L Sliding mode control of uncertain multivariable nonlinear systems applied to uncalibrated robotics visual servoing 2009 St. Louis, MO, USAOliveira, T. R., Leite, A. C., Peixoto, A. J., & Hsu, L. (2014). Overcoming Limitations of Uncalibrated Robotics Visual Servoing by means of Sliding Mode Control and Switching Monitoring Scheme. Asian Journal of Control, 16(3), 752-764. doi:10.1002/asjc.899Li, F., & Xie, H.-L. (2010). Sliding mode variable structure control for visual servoing system. International Journal of Automation and Computing, 7(3), 317-323. doi:10.1007/s11633-010-0509-5Kim J Kim D Choi S Won S Image-based visual servoing using sliding mode control 2006 Busan, South KoreaBurger W Dean-Leon E Cheng G Robust second order sliding mode control for 6D position based visual servoing with a redundant mobile manipulator 2015 Seoul, South KoreaBecerra, H. M., L贸pez-Nicol谩s, G., & Sag眉茅s, C. (2011). A Sliding-Mode-Control Law for Mobile Robots Based on Epipolar Visual Servoing From Three Views. IEEE Transactions on Robotics, 27(1), 175-183. doi:10.1109/tro.2010.2091750Parsapour, M., & Taghirad, H. D. (2015). Kernel-based sliding mode control for visual servoing system. IET Computer Vision, 9(3), 309-320. doi:10.1049/iet-cvi.2013.0310Xin J Ran BJ Ma XM Robot visual sliding mode servoing using SIFT features 2016 Chengdu, ChinaZhao, Y. M., Lin, Y., Xi, F., Guo, S., & Ouyang, P. (2016). Switch-Based Sliding Mode Control for Position-Based Visual Servoing of Robotic Riveting System. Journal of Manufacturing Science and Engineering, 139(4). doi:10.1115/1.4034681Moosavian, S. A. A., & Papadopoulos, E. (2007). Modified transpose Jacobian control of robotic systems. Automatica, 43(7), 1226-1233. doi:10.1016/j.automatica.2006.12.029Sagara, S., & Taira, Y. (2008). Digital control of space robot manipulators with velocity type joint controller using transpose of generalized Jacobian matrix. Artificial Life and Robotics, 13(1), 355-358. doi:10.1007/s10015-008-0584-7Khalaji, A. K., & Moosavian, S. A. A. (2015). Modified transpose Jacobian control of a tractor-trailer wheeled robot. Journal of Mechanical Science and Technology, 29(9), 3961-3969. doi:10.1007/s12206-015-0841-3Utkin, V., Guldner, J., & Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems. doi:10.1201/9781420065619Utkin, V. (2016). Discussion Aspects of High-Order Sliding Mode Control. IEEE Transactions on Automatic Control, 61(3), 829-833. doi:10.1109/tac.2015.2450571Romdhane, H., Dehri, K., & Nouri, A. S. (2016). Discrete second-order sliding mode control based on optimal sliding function vector for multivariable systems with input-output representation. International Journal of Robust and Nonlinear Control, 26(17), 3806-3830. doi:10.1002/rnc.3536Sharma, N. K., & Janardhanan, S. (2017). Optimal discrete higher-order sliding mode control of uncertain LTI systems with partial state information. International Journal of Robust and Nonlinear Control. doi:10.1002/rnc.3785LEVANT, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247-1263. doi:10.1080/00207179308923053Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924-941. doi:10.1080/0020717031000099029Bartolini, G., Ferrara, A., & Usai, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on Automatic Control, 43(2), 241-246. doi:10.1109/9.661074Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1Deo, A. S., & Walker, I. D. (1995). Overview of damped least-squares methods for inverse kinematics of robot manipulators. Journal of Intelligent & Robotic Systems, 14(1), 43-68. doi:10.1007/bf01254007WHEELER, G., SU, C.-Y., & STEPANENKO, Y. (1998). A Sliding Mode Controller with Improved Adaptation Laws for the Upper Bounds on the Norm of Uncertainties. Automatica, 34(12), 1657-1661. doi:10.1016/s0005-1098(98)80024-1Yu-Sheng Lu. (2009). Sliding-Mode Disturbance Observer With Switching-Gain Adaptation and Its Application to Optical Disk Drives. IEEE Transactions on Industrial Electronics, 56(9), 3743-3750. doi:10.1109/tie.2009.2025719Chen, X., Shen, W., Cao, Z., & Kapoor, A. (2014). A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles. Journal of Power Sources, 246, 667-678. doi:10.1016/j.jpowsour.2013.08.039Cong, B. L., Chen, Z., & Liu, X. D. (2012). On adaptive sliding mode control without switching gain鈥塷verestimation. International Journal of Robust and Nonlinear Control, 24(3), 515-531. doi:10.1002/rnc.2902Taleb, M., Plestan, F., & Bououlid, B. (2014). An adaptive solution for robust control based on integral high-order sliding mode concept. International Journal of Robust and Nonlinear Control, 25(8), 1201-1213. doi:10.1002/rnc.3135Zhu, J., & Khayati, K. (2016). On a new adaptive sliding mode control for MIMO nonlinear systems with uncertainties of unknown bounds. International Journal of Robust and Nonlinear Control, 27(6), 942-962. doi:10.1002/rnc.3608Hafez AHA Cervera E Jawahar CV Hybrid visual servoing by boosting IBVS and PBVS 2008 Damascus, SyriaKermorgant O Chaumette F Combining IBVS and PBVS to ensure the visibility constraint 2011 San Francisco, CA, USACorke, P. I., & Hutchinson, S. A. (2001). A new partitioned approach to image-based visual servo control. IEEE Transactions on Robotics and Automation, 17(4), 507-515. doi:10.1109/70.954764Yang, Z., & Shen, S. (2017). Monocular Visual鈥揑nertial State Estimation With Online Initialization and Camera鈥揑MU Extrinsic Calibration. IEEE Transactions on Automation Science and Engineering, 14(1), 39-51. doi:10.1109/tase.2016.2550621Chesi G Hashimoto K Static-eye against hand-eye visual servoing 2002 Las Vegas, NV, USABourdis N Marraud D Sahbi H Camera pose estimation using visual servoing for aerial video change detection 2012 Munich, GermanyShademan A Janabi-Sharifi F Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing 2005 USAMalis, E., Mezouar, Y., & Rives, P. (2010). Robustness of Image-Based Visual Servoing With a Calibrated Camera in the Presence of Uncertainties in the Three-Dimensional Structure. IEEE Transactions on Robotics, 26(1), 112-120. doi:10.1109/tro.2009.2033332Chen J Behal A Dawson D Dixon W Adaptive visual servoing in the presence of intrinsic calibration uncertainty 2003 USAMezouar Y Malis E Robustness of central catadioptric image-based visual servoing to uncertainties on 3D parameters 2004 Sendai, JapanMarchand, E., Spindler, F., & Chaumette, F. (2005). ViSP for visual servoing: a generic software platform with a wide class of robot control skills. IEEE Robotics & Automation Magazine, 12(4), 40-52. doi:10.1109/mra.2005.157702

    Robot Visual Servoing Using Discontinuous Control

    Full text link
    This work presents different proposals to deal with common problems in robot visual servoing based on the application of discontinuous control methods. The feasibility and effectiveness of the proposed approaches are substantiated by simulation results and real experiments using a 6R industrial manipulator. The main contributions are: - Geometric invariance using sliding mode control (Chapter 3): the defined higher-order invariance is used by the proposed approaches to tackle problems in visual servoing. Proofs of invariance condition are presented. - Fulfillment of constraints in visual servoing (Chapter 4): the proposal uses sliding mode methods to satisfy mechanical and visual constraints in visual servoing, while a secondary task is considered to properly track the target object. The main advantages of the proposed approach are: low computational cost, robustness and fully utilization of the allowed space for the constraints. - Robust auto tool change for industrial robots using visual servoing (Chapter 4): visual servoing and the proposed method for constraints fulfillment are applied to an automated solution for tool changing in industrial robots. The robustness of the proposed method is due to the control law of the visual servoing, which uses the information acquired by the vision system to close a feedback control loop. Furthermore, sliding mode control is simultaneously used in a prioritized level to satisfy the aforementioned constraints. Thus, the global control accurately places the tool in the warehouse, but satisfying the robot constraints. - Sliding mode controller for reference tracking (Chapter 5): an approach based on sliding mode control is proposed for reference tracking in robot visual servoing using industrial robot manipulators. The novelty of the proposal is the introduction of a sliding mode controller that uses a high-order discontinuous control signal, i.e., joint accelerations or joint jerks, in order to obtain a smoother behavior and ensure the robot system stability, which is demonstrated with a theoretical proof. - PWM and PFM for visual servoing in fully decoupled approaches (Chapter 6): discontinuous control based on pulse width and pulse frequency modulation is proposed for fully decoupled position based visual servoing approaches, in order to get the same convergence time for camera translation and rotation. Moreover, other results obtained in visual servoing applications are also described.Este trabajo presenta diferentes propuestas para tratar problemas habituales en el control de robots por realimentaci贸n visual, basadas en la aplicaci贸n de m茅todos de control discontinuos. La viabilidad y eficacia de las propuestas se fundamenta con resultados en simulaci贸n y con experimentos reales utilizando un robot manipulador industrial 6R. Las principales contribuciones son: - Invariancia geom茅trica utilizando control en modo deslizante (Cap铆tulo 3): la invariancia de alto orden definida aqu铆 es utilizada despu茅s por los m茅todos propuestos, para tratar problemas en control por realimentaci贸n visual. Se apuertan pruebas te贸ricas de la condici贸n de invariancia. - Cumplimiento de restricciones en control por realimentaci贸n visual (Cap铆tulo 4): esta propuesta utiliza m茅todos de control en modo deslizante para satisfacer restricciones mec谩nicas y visuales en control por realimentaci贸n visual, mientras una tarea secundaria se encarga del seguimiento del objeto. Las principales ventajas de la propuesta son: bajo coste computacional, robustez y plena utilizaci贸n del espacio disponible para las restricciones. - Cambio de herramienta robusto para un robot industrial mediante control por realimentaci贸n visual (Cap铆tulo 4): el control por realimentaci贸n visual y el m茅todo propuesto para el cumplimiento de las restricciones se aplican a una soluci贸n automatizada para el cambio de herramienta en robots industriales. La robustez de la propuesta radica en el uso del control por realimentaci贸n visual, que utiliza informaci贸n del sistema de visi贸n para cerrar el lazo de control. Adem谩s, el control en modo deslizante se utiliza simult谩neamente en un nivel de prioridad superior para satisfacer las restricciones. As铆 pues, el control es capaz de dejar la herramienta en el intercambiador de herramientas de forma precisa, a la par que satisface las restricciones del robot. - Controlador en modo deslizante para seguimiento de referencia (Cap铆tulo 5): se propone un enfoque basado en el control en modo deslizante para seguimiento de referencia en robots manipuladores industriales controlados por realimentaci贸n visual. La novedad de la propuesta radica en la introducci贸n de un controlador en modo deslizante que utiliza la se帽al de control discontinua de alto orden, i.e. aceleraciones o jerks de las articulaciones, para obtener un comportamiento m谩s suave y asegurar la estabilidad del sistema rob贸tico, lo que se demuestra con una prueba te贸rica. - Control por realimentaci贸n visual mediante PWM y PFM en m茅todos completamente desacoplados (Cap铆tulo 6): se propone un control discontinuo basado en modulaci贸n del ancho y frecuencia del pulso para m茅todos completamente desacoplados de control por realimentaci贸n visual basados en posici贸n, con el objetivo de conseguir el mismo tiempo de convergencia para los movimientos de rotaci贸n y traslaci贸n de la c谩mara . Adem谩s, se presentan tambi茅n otros resultados obtenidos en aplicaciones de control por realimentaci贸n visual.Aquest treball presenta diferents propostes per a tractar problemes habituals en el control de robots per realimentaci贸 visual, basades en l'aplicaci贸 de m猫todes de control discontinus. La viabilitat i efic脿cia de les propostes es fonamenta amb resultats en simulaci贸 i amb experiments reals utilitzant un robot manipulador industrial 6R. Les principals contribucions s贸n: - Invari脿ncia geom猫trica utilitzant control en mode lliscant (Cap铆tol 3): la invari脿ncia d'alt ordre definida ac铆 茅s utilitzada despr茅s pels m猫todes proposats, per a tractar problemes en control per realimentaci贸 visual. S'aporten proves te貌riques de la condici贸 d'invari脿ncia. - Compliment de restriccions en control per realimentaci贸 visual (Cap铆tol 4): aquesta proposta utilitza m猫todes de control en mode lliscant per a satisfer restriccions mec脿niques i visuals en control per realimentaci贸 visual, mentre una tasca secund脿ria s'encarrega del seguiment de l'objecte. Els principals avantatges de la proposta s贸n: baix cost computacional, robustesa i plena utilitzaci贸 de l'espai disponible per a les restriccions. - Canvi de ferramenta robust per a un robot industrial mitjan莽ant control per realimentaci贸 visual (Cap铆tol 4): el control per realimentaci贸 visual i el m猫tode proposat per al compliment de les restriccions s'apliquen a una soluci贸 automatitzada per al canvi de ferramenta en robots industrials. La robustesa de la proposta radica en l'煤s del control per realimentaci贸 visual, que utilitza informaci贸 del sistema de visi贸 per a tancar el lla莽 de control. A m茅s, el control en mode lliscant s'utilitza simult脿niament en un nivell de prioritat superior per a satisfer les restriccions. Aix铆 doncs, el control 茅s capa莽 de deixar la ferramenta en l'intercanviador de ferramentes de forma precisa, a la vegada que satisf脿 les restriccions del robot. - Controlador en mode lliscant per a seguiment de refer猫ncia (Cap铆tol 5): es proposa un enfocament basat en el control en mode lliscant per a seguiment de refer猫ncia en robots manipuladors industrials controlats per realimentaci贸 visual. La novetat de la proposta radica en la introducci贸 d'un controlador en mode lliscant que utilitza senyal de control discont铆nua d'alt ordre, i.e. acceleracions o jerks de les articulacions, per a obtindre un comportament m茅s suau i assegurar l'estabilitat del sistema rob貌tic, la qual cosa es demostra amb una prova te貌rica. - Control per realimentaci贸 visual mitjan莽ant PWM i PFM en m猫todes completament desacoblats (Cap铆tol 6): es proposa un control discontinu basat en modulaci贸 de l'ample i la freq眉猫ncia del pols per a m猫todes completament desacoblats de control per realimentaci贸 visual basats en posici贸, amb l'objectiu d'aconseguir el mateix temps de converg猫ncia per als moviments de rotaci贸 i translaci贸 de la c脿mera. A m茅s, es presenten tamb茅 altres resultats obtinguts en aplicacions de control per realimentaci贸 visual.Mu帽oz Benavent, P. (2017). Robot Visual Servoing Using Discontinuous Control [Tesis doctoral no publicada]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/90430TESI

    Kernel鈥恇ased sliding mode control for visual servoing system

    No full text
    In this study, a new approach to design a controller for a visual servoing (VS) system is proposed. Kernel鈥恗easurement is used to track the motion of a featureless object which is defined as sum of weighted鈥恑mage value through smooth kernel functions. This approach was used in kernel鈥恇ased VS (KBVS). To improve the tracking error and expand the stability region, sliding mode control is integrated with kernel measurement. Proportional鈥搃ntegral鈥恡ype sliding surface is chosen as a suitable manifold to produce the required control effort. Moreover, the stability of this algorithm is analysed via Lyapunov theory and its performance is verified experimentally by implementing the proposed method on a five degrees of freedom industrial robot. Through experimental results, it is shown that the performance of tracking error in the proposed method is more suitable than KBVS, for a wider workspace and when the object is placed near the boundary of the camera's field of view
    corecore